Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was adolescent galaxy a gang member?

18.03.2002


Where’s the matter? MS1512-cB58 (arrowed) may be surrounded by it.
© ESO


Light bending reveals clumps of matter around early galaxy.

European astronomers have got their first glimpse of the soup of matter that surrounded a galaxy in the early Universe, just 3 billion years after the Big Bang. Their results provide clues as to how this matter got together, which is crucial to understanding why the Universe looks the way it does today1.

The 12-billion-year-old galaxy is called MS 1512-cB58. It is not the earliest galaxy known, but because of a cosmic coincidence it is by far the brightest of its vintage.



MS 1512-cB58’s light would be too weak to be seen but for a light-bending cluster of more recent galaxies lying between it and the Earth. This cluster magnifies MS 1512-cB58 - a phenomenon called gravitational lensing. "Without it we’d just see a normal galaxy very faintly," says Sandra Savaglio of the Rome Astronomical Observatory in Monteporzio, Italy.

Working with the European Southern Observatory’s Very Large Telescope in Chile’s Atacama Desert, Savaglio’s team found that intervening clouds of dust and gas had scattered ultraviolet light from MS 1512-cB58, as it does all light from distant objects.

But their results suggest that there is a lot of material in the immediate environment of MS 1512-cB58 - possibly a gang of other galaxies. It could be more clouds of gas, but it may be a vast cluster of galaxies called a supercluster. "Where there is gas, there are probably stars and forming galaxies," says Savaglio.

This is crucial information to astronomers. They know that matter cooled and slowly clumped together after the Big Bang, forming stars and galaxies. But how much of this stuff there was, and how quickly it came together, is a mystery.

Savaglio’s results suggest that it happened relatively quickly. "If 12 billion years ago there were already clusters of clouds, it means that the Universe was in a very evolved state," she says.

Chuck Steidel, who studies galaxy formation at the California Institute of Technology in Pasadena, is cautious about drawing conclusions from measurements of a single galaxy. He views Savaglio’s findings rather as proof that galaxies can be used to do background surveys of matter in the Universe.

Unfortunately MS 1512-cB58 is the only galaxy that can be used to study the distribution of matter using today’s technology. Future telescopes - like the proposed Next Generation Space Telescope - may be able to probe the matter surrounding galaxies just as old without the help of a gravitational lens. This should make thousands of galaxies available for study.

Savaglio’s team bent over backwards to see the magnified galaxy. MS 1512-cB58 lies in the Earth’s northern skies, yet the VLT is in the south. There are northern telescopes more powerful than the VLT, but none is sensitive enough to the ultraviolet light that Savaglio’s team were looking for. So they pointed the telescope just above the horizon in the Chile’s northern sky to see MS 1512-cB58. "It was practically lying down," recalls Savaglio.

References

  1. Savaglio, S., Panagia, N. & Padovani, P. The Lya forest of a lyman break galaxy: Very Large Telescope spectra of MS 1512-cB58 at z=2.724. The Astrophysical Journal, 567, 702 - 711, (2002).

TOM CLARKE | © Nature News Service

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>