Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Double explosion heralds the death of a very massive star

A unique discovery of two celestial explosions at exactly the same position in the sky has led astronomers to suggest they have witnessed the death of one of the most massive stars that can exist. A global collaboration of astronomers, led by Queen’s University Belfast teamed up with Japanese supernova hunter Koichi Itagaki to report an amazing new discovery in Nature this week (June 14th). This is the first time such a double explosion has been observed and challenges our understanding of star-deaths.

In 2004 Koichi Itagaki discovered an exploding star in the galaxy UGC4904 (78 million light years away in the Lynx constellation), which rapidly faded from view in the space of 10 days. It was never formally announced to the community, but then he then found a new much brighter explosion in the same place only two years later in 2006, which he proposed as new supernova. Queen’s astronomers Prof. Stephen Smartt and Dr. Andrea Pastorello immediately realised the implications of finding two explosions at the same position on the sky.

They began observing the 2006 supernova (named SN2006jc) with a wide range of large telescopes and analysed Itagaki’s images to show that the two explosions were exactly in the same place. The most likely explanation for the 2004 explosion was probably an outburst of a very massive star like Eta-Carinae, which was observed to have a similar giant outburst in the 1850s. The 2006 supernova was the final death of the same star.

Dr. Pastorello said "We knew the 2004 explosion could be a giant outburst of very massive star, and we know that only the most massive stars can produce this type of outburst. So the 2006 supernova must have been the death of the same star, possibly a star 50 to 100 times more massive than the Sun. And it turns out that SN2006jc is a very weird supernova – unusually rich in the chemical element helium which supports our idea of a massive star outburst then death."

Dr. Pastorello used UK telescopes on La Palma (the Liverpool Telescope, and William Herschel Telescope) in a combined European and Asian effort to monitor the energetics of SN2006jc. He showed that the exploding star must have been a Wolf-Rayet star, which are the carbon-oxygen remains of originally very high mass stars.

Prof Smartt is funded by a prestigious EURYI fellowship to study the birth and death of stars. He said "The supernova was the explosion of a massive star that had lost its outer atmosphere, probably in a serious of minor explosions like the one Koichi found in 2004. The star was so massive it probably formed a black hole as it collapsed. This is the first time two explosions of the same star have been found, and it challenges our theories of the way stars live and die. "

Although this is the first time two such explosions have been found to be coincident, they could be more frequent than currently thought. The future Pan-STARRS project, a new telescope with the world’s largest digital camera which can survey the whole sky once a week could search for these peculiar supernovae. Queen’s are partners in the Pan-STARRS science team and hope to use it to understand how the most massive stars in the Universe die.

The Science and Technology Facilities Council funds UK research in astronomy and access to telescopes such as the William Herschel Telescope.

Julia Maddock | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>