Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SSTL Geostationary Mini-satellite Platform milestone completed

06.06.2007
World-leading small satellite manufacturer, Surrey Satellite Technology Ltd (SSTL), has successfully completed its Baseline Design Review for a Geostationary Mini-satellite Platform (GMP). The €2.28 million pre-development project forms part of ESA’s Advanced Research in TElecommunications Systems funding stream for ESA/Industry partnerships (ARTES 4).

The ARTES 4 initiative is aimed at supporting close to market developments within industry. Developments within this ARTES 4 project are part of the wider GMP development programme at SSTL that is applying the Company’s low-cost, rapid-schedule approaches to the GEO (Geostationary Earth Orbit) market. GMP is targeted on a platform designed for a 10-year mission life and capable of supporting a 200kg, 2.5kW power payload.

The design review was successfully completed with no outstanding actions and SSTL received very encouraging feedback from ESA. The review followed an accelerated study phase in which the baseline design of the ‘transfer orbit’ variant of the GMP was defined and marked the end of Phase 1 of the project. Phase 2 will look in more detail at aspects of the structural, thermal and propulsion subsystem designs.

Group Executive Chairman, Professor Sir Martin Sweeting, is confident that the economics of space could be changed by rethinking the approach to geostationary satellite design. “We are determined to offer the industry’s shortest order-to-orbit timescales for geostationary platforms. At the current rate of technology development in communications, operators want to see their payloads in orbit as soon as possible”, said Sir Martin.

SSTL sees the ESA contract as a valuable opportunity to progress its on-going Geostationary Minisatellite Platform (GMP) work, which started under the British National Space Centre’s MOSAIC programme. Work completed under MOSAIC (MicrO Satellite Applications In Collaboration) enabled SSTL to develop GIOVE-A for ESA, the first satellite of the Galileo navigation constellation. At an orbital height of over 23,000 km, GIOVE-A also constituted a successful first move ‘beyond LEO’ for the company.

SSTL’s Dr Kathryn O'Donnell is confident that the GMP developments provide new possibilities: “The move from LEO and even MEO to geostationary orbits demanded a rethink rather than a simple scaling-up of existing technologies. Our team of engineers, the majority of whom have significant experience on GEO telecommunications missions, have taken a top-down approach to the GMP design. This promises a dramatic reduction in project timescales whilst incorporating proven SSTL heritage designs and processes.”

The move from LEO to MEO orbits and out to GEO is not without its challenges. Key differences will arise: the structural design must support much more weight and a larger payload, the thermal design must address the heat dissipation from potentially power-intensive communications payloads and the propulsion system must be capable of transferring the spacecraft from Geostationary Transfer Orbit (GTO) to GEO for this transfer variant of the GMP. The focus of Phase 2 of the ARTES 4 project is to address the developments required in these areas.

SSTL develops innovative technologies to change the economics of space, delivering cost effective satellite missions within rapid timescales. The Company is a world leader in the design, manufacture and operation of high performance small satellites with experience gained over more than 25 years and 27 missions launched.

SSTL employs 250 staff working on LEO, GEO and interplanetary missions, turnkey satellite platforms and space-proven satellite subsystems and optical systems. The Company also provides know-how transfer and training programmes and consultancy services, and performs studies for ESA, NASA and commercial customers related to platform design, mission analysis and planning.

Based in Guildford, UK, SSTL is owned by the University of Surrey (85%), SSTL staff (5%), and SpaceX of the USA (10%).

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk
http://portal.surrey.ac.uk/portal/page?_pageid=799,1532686&_dad=portal&_schema=PORTAL

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>