Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SSTL Geostationary Mini-satellite Platform milestone completed

06.06.2007
World-leading small satellite manufacturer, Surrey Satellite Technology Ltd (SSTL), has successfully completed its Baseline Design Review for a Geostationary Mini-satellite Platform (GMP). The €2.28 million pre-development project forms part of ESA’s Advanced Research in TElecommunications Systems funding stream for ESA/Industry partnerships (ARTES 4).

The ARTES 4 initiative is aimed at supporting close to market developments within industry. Developments within this ARTES 4 project are part of the wider GMP development programme at SSTL that is applying the Company’s low-cost, rapid-schedule approaches to the GEO (Geostationary Earth Orbit) market. GMP is targeted on a platform designed for a 10-year mission life and capable of supporting a 200kg, 2.5kW power payload.

The design review was successfully completed with no outstanding actions and SSTL received very encouraging feedback from ESA. The review followed an accelerated study phase in which the baseline design of the ‘transfer orbit’ variant of the GMP was defined and marked the end of Phase 1 of the project. Phase 2 will look in more detail at aspects of the structural, thermal and propulsion subsystem designs.

Group Executive Chairman, Professor Sir Martin Sweeting, is confident that the economics of space could be changed by rethinking the approach to geostationary satellite design. “We are determined to offer the industry’s shortest order-to-orbit timescales for geostationary platforms. At the current rate of technology development in communications, operators want to see their payloads in orbit as soon as possible”, said Sir Martin.

SSTL sees the ESA contract as a valuable opportunity to progress its on-going Geostationary Minisatellite Platform (GMP) work, which started under the British National Space Centre’s MOSAIC programme. Work completed under MOSAIC (MicrO Satellite Applications In Collaboration) enabled SSTL to develop GIOVE-A for ESA, the first satellite of the Galileo navigation constellation. At an orbital height of over 23,000 km, GIOVE-A also constituted a successful first move ‘beyond LEO’ for the company.

SSTL’s Dr Kathryn O'Donnell is confident that the GMP developments provide new possibilities: “The move from LEO and even MEO to geostationary orbits demanded a rethink rather than a simple scaling-up of existing technologies. Our team of engineers, the majority of whom have significant experience on GEO telecommunications missions, have taken a top-down approach to the GMP design. This promises a dramatic reduction in project timescales whilst incorporating proven SSTL heritage designs and processes.”

The move from LEO to MEO orbits and out to GEO is not without its challenges. Key differences will arise: the structural design must support much more weight and a larger payload, the thermal design must address the heat dissipation from potentially power-intensive communications payloads and the propulsion system must be capable of transferring the spacecraft from Geostationary Transfer Orbit (GTO) to GEO for this transfer variant of the GMP. The focus of Phase 2 of the ARTES 4 project is to address the developments required in these areas.

SSTL develops innovative technologies to change the economics of space, delivering cost effective satellite missions within rapid timescales. The Company is a world leader in the design, manufacture and operation of high performance small satellites with experience gained over more than 25 years and 27 missions launched.

SSTL employs 250 staff working on LEO, GEO and interplanetary missions, turnkey satellite platforms and space-proven satellite subsystems and optical systems. The Company also provides know-how transfer and training programmes and consultancy services, and performs studies for ESA, NASA and commercial customers related to platform design, mission analysis and planning.

Based in Guildford, UK, SSTL is owned by the University of Surrey (85%), SSTL staff (5%), and SpaceX of the USA (10%).

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk
http://portal.surrey.ac.uk/portal/page?_pageid=799,1532686&_dad=portal&_schema=PORTAL

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>