Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two non-magnetic materials suddenly show magnetism at their interface

06.06.2007
Two non-magnetic materials showing magnetism on their interface: scientists of the University of Twente and Radboud University of Nijmegen show that it is possible, in the coming issue of Nature Materials – already online.

Publication of this remarkable effect shortly follows previous results, presented in Physical Review Letters, in which scientist of Twente and Stanford explain why the same materials, being insulators as well, show current conductivity at their interface. Magnetism in nanoscale materials is a hot topic, as is also shown in the June issue of Physics Today. Magnetic layers in semiconductor structures are particularly interesting for new information carriers.


Atomic layering of the materials SrTiO3 and LaAlO3 results in a charge transfer to the interface. The electrons form localised magnetic momenta in materials that aren’t magnetic by themselves.

The materials showing these unexpected properties are so-called perovskites. The Inorganic Materials and Low Temperatures sections of the MESA+ Institute for Nanotechnology have examined the properties of these materials for some time now. They are oxidic materials showing other surprising features like high-temperature superconductivity and ferroelectricity. Combinations of materials, made by layering them on top of each other, yield interface properties totally differing from those of the bulk material. The interface between strontium-titanate (SrTiO3) and lanthane-aluminate (LaAlO3), both insulators, shows high current conductivity. Joint research at Twente and Stanford University show that, apart from charge that is intrinsically built up, oxygen vacancies play a major role. The research now presented in Nature Materials shows that the layers aren’t just highly conductive: the interface is magnetic as well.

Layer for layer

For studying the interface, precise control of the growth of materials on the atomic scale is vital. Using laser pulses, the scientists can ‘build’ a material unit cell for unit cell, on a carrying crystal. The unit cell is the smallest basic structure of a crystal. Growth can be monitored to the extreme detail. Looking at separate atoms within a unit cell, layers with different charges can occur. Whenever a layer with a net positive charge is placed above a layer with a negative charge, and so on, configurations are possible with an extra positive layer. These layers provide electrons, and take care for conductivity and magnetism.

Inzicht in grensvlakmagnetisme

Through tests in the High Field Magnet Laboratory of the Radboud University of Nijmegen, The Netherlands, holding one of the largest magnets in the world, the researchers gained more insight into the magnetism at the interface between strontium-titanate and lanthane-aluminate. They found out that the electrical resistance is a function of the external magnetic field. In a strong field of 30 Tesla, the resistance is 30% lower than without a magnetic field. This implies that at the intergace local magnetic momenta are present, of which the alignment has an effect upon the resistance. Apart from that, resistance and temperature are logarithmically related, which points in the direction of the so-called Kondo effect. This quantummechanical effect describes localized magnetic momenta shielded by free electrons. At extremely low temperatures (300 millikelvin) hysteresis appears in the resistance: this is a strong indication for magnetic ordening at larger distances.

Hot topic

Magnetism within thin layers, especially in semiconductor structures, forms a hot topic within physics. The new results open the way to a fully new model system for fundamental research on magnetic interaction in materials. Broadening the scope, other phenomena not appearing within the bulk, but present at the interface can be investigated.

The research has been made possible by the Dutch Foundation for Fundamental Research on Matter (FOM) and the Dutch Organisation for Scientific Research NWO.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>