Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create new nanotechnology field

31.05.2007
A University of Alberta research team has combined two fields of study in nanotechnology to create a third field that the researchers believe will lead to revolutionary advances in computer electronics, among many other areas.

Dr. Abdulhakem Elezzabi and his colleagues have applied plasmonics principles to spintronics technology and created a novel way to control the quantum state of an electron's spin.

The new technology, which the researchers call spinplasmonics, may be used to create incredibly efficient electron spin-based photonic devices, which in turn may be used to build, for example, computers with extraordinary capacities.

"We've only just begun to scratch the surface of this field, but we believe we have the physics sorted out and one day this technology will be used to develop very fast, very small electronics that have a very low power consumption," said Elezzabi, the Canada Research Chair in Ultrafast Photonics and Nano-Optics and an electrical and computer engineering professor at the U of A.

Elezzabi's work addresses a number of challenges that, to this point, have hindered further advancement in computer electronics, such as in the creation of smaller devices. One such challenge is that as traditional, silicon-based semiconductor devices approach the nanoscale, the laws of quantum physics take control over their performance (specifically the flow of charges—i.e. electrons) and render them inoperable.

Researchers in the field of spintronics have tried to address this problem by building metal-based devices that harness the magnetic quantum properties of the spin of electrons. Although the spintronics field is barely a dozen years-old, some devices that incorporate spintronics technology are already on the market.

The field of plasmonics, which is even younger than spintronics, involves the transfer of light electromagnetic energy into a tiny volume, thus creating intense electric fields—a phenomenon that has many scientists rethinking the laws of electromagnetics on a nanoscale. The plasmonics field has many wide-ranging applications, from guiding light through metal wires, to bio-sensing, to making objects invisible to the eye.

One of the main challenges for plasmonics researchers is finding a way to propagate light over a long distance through solid materials. However, Elezzabi and his colleagues, U of A graduate student Kenneth Chau and Dr. Mark Johnson of the U. S. Naval Research Laboratory, have successfully combined plasmonics and spintronics in a way that puts plasmonics in a new light, and puts a new spin on spintronics.

Working with gold and cobalt samples, Elezzabi and his team were able to demonstrate a plasmonically-activated spintronic device that switches light on and off by controlling electron spins. Also, they believe that with a slight alteration of the sample structure the effect is non-volatile, meaning that any given result can be maintained indefinitely without the necessity of a power source.

"With the development of this technology I envision a move from semiconductors [silicon chips] to metal based electronics with light-driven circuits," Elezzabi said.

The research was published recently in the academic journal Physical Review Letters, and the researchers have filed for a patent for the applications they have developed.

"To me this is almost a natural evolution of the two fields. I'm actually surprised that no one else looked around and saw what others were doing and combined the two before we did," Elezzabi added. "This opens up a lot of possibilities; this is just the beginning."

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>