Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers detect the shadow of a water world in front of a nearby star

16.05.2007
A team of European astronomers leaded by Michaël Gillon, a researcher from Liege University, has measured the transit of a Neptune-sized planet around another star. For the first time, the size and density of such a small extra-solar planet is measured, showing that this planet is made up mainly of water.

The star GJ 436, a diminutive star (red dwarf) 30 light-years from the Sun, was known since 2004 to harbour a 22-Earth mass planet, orbiting 4 million kilometers from the star (0.03 Astronomical Units). Observations from the OFXB observatory in St-Luc, Switzerland, showed a periodic dimming of the star due to the passage of the planet in front of it. This event, called a transit, was subsequently confirmed with telescopes at the Wise Observatory in Israel, then precisely measured with the Euler telescope of Geneva University Observatory in Chile.

These measurements show that the planet has a diameter of about 50,000 km, four times that of the Earth. From the size and mass of the planet, the astronomers could infer that it is mainly composed of water. If the planet contained mostly hydrogen and helium – like Jupiter or Saturn – it would be much larger, and if it was made up of rock and iron like Earth, Mars and Venus, it would be much smaller. Michaël Gillon says : « This discovery is an important step towards the detection and study of Earth-like planets ».

This water world can either be surrounded by a light envelope of hydrogen and helium, like Neptune and Uranus, or be entirely surrounded by water, like most of Jupiter’s satellites. As the planet is close to its host star, its surface temperature is expected to be at least 300 C (600 F). The water in its atmosphere would therefore be in the form of steam. Inside, the water is crushed under intense pressure and adopts states unknown on Earth, except in physicist’s laboratories. Says Frédéric Pont : « water has more than a dozen solid states, only one of which is our familiar ice. Under very high pressure, water turns into other solid states denser than both ice and liquid water, just as carbon transforms into diamond under extreme pressures. Physicists call these exotic forms of water « Ice VII » and « Ice X ». If Earth’s oceans were much deeper, there would be such exotic forms of solid water at the bottom ». Inside GJ 436’s planet, this strange ice is moreover heated to many hundred degrees.

The detection of such a « hot ice world » has important consequences. It shows for the first time that planets similar to the « ice giants » Uranus and Neptune in our own Solar System exist at close distances from their star (the planet of GJ436 orbits every 2.6 days). Many of the planets of similar mass detected around other stars by the astronomers may therefore also be composed mainly of water. Some of them will have cooler temperatures, allowing the water on the surface to be liquid. Such planets covered by a single huge ocean have been dubbed « Ocean planets » by the specialists.

« The Corot satellite, which started operating at the beginning of this year, has among its main objectives to measure the size of planets like the one we just measured around GJ436, and even smaller. The Corot mission, to which astronomers from Geneva University are active participants, will allow a closer study of ocean planets and telluric planets like our own », says Didier Queloz.

Didier Moreau | alfa
Further information:
http://www.ulg.ac.be

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>