Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers detect the shadow of a water world in front of a nearby star

16.05.2007
A team of European astronomers leaded by Michaël Gillon, a researcher from Liege University, has measured the transit of a Neptune-sized planet around another star. For the first time, the size and density of such a small extra-solar planet is measured, showing that this planet is made up mainly of water.

The star GJ 436, a diminutive star (red dwarf) 30 light-years from the Sun, was known since 2004 to harbour a 22-Earth mass planet, orbiting 4 million kilometers from the star (0.03 Astronomical Units). Observations from the OFXB observatory in St-Luc, Switzerland, showed a periodic dimming of the star due to the passage of the planet in front of it. This event, called a transit, was subsequently confirmed with telescopes at the Wise Observatory in Israel, then precisely measured with the Euler telescope of Geneva University Observatory in Chile.

These measurements show that the planet has a diameter of about 50,000 km, four times that of the Earth. From the size and mass of the planet, the astronomers could infer that it is mainly composed of water. If the planet contained mostly hydrogen and helium – like Jupiter or Saturn – it would be much larger, and if it was made up of rock and iron like Earth, Mars and Venus, it would be much smaller. Michaël Gillon says : « This discovery is an important step towards the detection and study of Earth-like planets ».

This water world can either be surrounded by a light envelope of hydrogen and helium, like Neptune and Uranus, or be entirely surrounded by water, like most of Jupiter’s satellites. As the planet is close to its host star, its surface temperature is expected to be at least 300 C (600 F). The water in its atmosphere would therefore be in the form of steam. Inside, the water is crushed under intense pressure and adopts states unknown on Earth, except in physicist’s laboratories. Says Frédéric Pont : « water has more than a dozen solid states, only one of which is our familiar ice. Under very high pressure, water turns into other solid states denser than both ice and liquid water, just as carbon transforms into diamond under extreme pressures. Physicists call these exotic forms of water « Ice VII » and « Ice X ». If Earth’s oceans were much deeper, there would be such exotic forms of solid water at the bottom ». Inside GJ 436’s planet, this strange ice is moreover heated to many hundred degrees.

The detection of such a « hot ice world » has important consequences. It shows for the first time that planets similar to the « ice giants » Uranus and Neptune in our own Solar System exist at close distances from their star (the planet of GJ436 orbits every 2.6 days). Many of the planets of similar mass detected around other stars by the astronomers may therefore also be composed mainly of water. Some of them will have cooler temperatures, allowing the water on the surface to be liquid. Such planets covered by a single huge ocean have been dubbed « Ocean planets » by the specialists.

« The Corot satellite, which started operating at the beginning of this year, has among its main objectives to measure the size of planets like the one we just measured around GJ436, and even smaller. The Corot mission, to which astronomers from Geneva University are active participants, will allow a closer study of ocean planets and telluric planets like our own », says Didier Queloz.

Didier Moreau | alfa
Further information:
http://www.ulg.ac.be

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>