Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme Winds Rule Exoplanet's Weather

10.05.2007
Supersonic winds more than six times faster than those on Jupiter are blasting through the atmosphere of a Jupiter-sized planet 60 light years away, say scientists who've analyzed results from NASA's Spitzer Space Telescope.

They're part of a team that mapped weather on a planet beyond our solar system, a gas giant planet called HD 189733b.

"The exoplanet's wind speeds probably exceed the speed of sound," said Adam Showman of the University of Arizona Lunar and Planetary Laboratory (LPL). "And the speed of sound on these planets is 10 times faster than on Earth, so that's saying something." The speed of sound in HD 189733b's atmosphere is about 3 kilometers per second, or 6,700 mph.

Showman and LPL research associate Curtis Cooper analyzed Spitzer data on planet HD 189733b using the numerical models they've been developing for exoplanet atmospheres. The planet, which is in constellation Vulpecula, is the closest known 'transiting' planet. A transiting planet is seen to cross in front and behind its star when viewed from Earth. The planet is "tidally locked" to its star, so that one side always faces the star and the other side is always dark, just as the moon is tidally locked to the Earth.

A team led by Heather Knutson of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., used the Spitzer Space Telescope to measure the infrared light, or heat, as the planet orbited its sun-like star. The result is one of the first-ever temperature maps for an exoplanet. The map shows that dayside and nightside temperatures differ only by about 500 degrees Fahrenheit, ranging from 1,200 degrees F on the nightside to 1,700 degrees F on the dayside.

"At these high temperatures, air cools off rapidly when it moves from the dayside to the nightside," Showman said. "That relatively small temperature difference implies that fierce winds redistribute a lot of the heat."

"We need to do more detailed modeling to calculate actual wind speeds. At this stage, the numbers are all quite uncertain," he said. "However, we can be certain the speeds are FAST, probably a couple of kilometers per second," or about 4,500 mph. The supersonic exoplanet winds might be as great as 10 kilometers per second, or about 22,000 mph, the UA researchers calculate.

"This isn't just the case where you need winds, but winds that are fast enough to move air from one side of the gas giant planet to the other before it has time to cool off," Showman said.

"We might have a situation where the winds are moving faster than the rotating planet itself because 'hot Jupiters' like this one rotate slowly," Showman said. The hot Jupiter exoplanet rotates at about 2 kilometers per second (about 4,500 mph) at its equator.

Earth and Jupiter's winds are anemic, by comparison. The Earth is spinning at almost 1,000 mph at its equator. A given point at Earth's equator rotates through Earth's 25,000 mile circumference in 24 hours. But its wind speeds are only around 20 to 200 mph. The same is true on Jupiter. Jupiter's equator rotates at almost 27,000 mph, but its wind speeds are only around 70 to 340 mph.

Cooper's and Showman's numerical simulations predicted a larger difference between dayside and nightside temperatures, so winds on exoplanet HD 189733b are more complex than their models currently reflect, Showman said.

But their simulations match the observations in some other respects. One of their predictions is that the winds distort the temperature pattern, blowing the hottest region downwind from the locations that get maximum starlight. "The exoplanet doesn't emit its greatest energy toward Earth when aimed at Earth,"

Showman said. "As our models predict, the hottest point is seen a couple of hours before the planet passes behind the star."

Knutson is first author, Showman and Cooper are among the co-authors of the paper, "A map of the day-night contrast of the extrasolar planet HD 189733b,"

in the May 10 issue of Nature. NASA and the National Science Foundation fund the UA scientists' research.

Contact Information
Adam Showman (520) 621-4021 showman@lpl.arizona.edu (Contact Showman by e-mail anytime, and also by phone beginning May 14) Curtis Cooper (520) 626-8596 curtis@lpl.arizona.edu

Lori Stiles | University of Arizona
Further information:
http://uanews.org/science
http://www.spitzer.caltech.edu/Media/releases/ssc2007-09/

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>