Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Step Closer to Realising Invisible Technology

A unique computer model designed by a mathematician at the University of Liverpool has shown that it is possible to make objects, such as aeroplanes and submarines, appear invisible at close range.

Scientists have already created an ‘invisibility cloak’ made out of ‘metamaterial’ which can bend electromagnetic radiation – such as visible light, radar or microwaves – around a spherical space, making an object within this region appear invisible.

Until now, scientists could only make objects appear invisible from far away. Liverpool mathematician Dr Sébastien Guenneau, together with Dr Frédéric Zolla and Professors André Nicolet from the University of Marseille, have proven - using a specially designed computer model called GETDP - that objects can also be made to appear invisible from close range when light travels in waves rather than beams.

Scientists predict that metamaterials could be of use in military technology, such as in the construction of fighter jets and submarines, but it will be some years before invisibility cloaks can be developed for human beings.

Dr Guenneau, at the University’s Department of Mathematical Science, explains:
“The shape and structure of aeroplanes make them ideal objects for cloaking, as they have a fixed structure and movement pattern. Human beings and animals are more difficult as their movement is very flexible, so the cloak - as it is designed at the moment - would easily be seen when the person or animal made any sudden movement.

“A cloak, such as the one worn by the Harry Potter character for example, is not yet possible but it is a good example of what we are trying to move towards. Using this new computer model we can prove that light can bend around an object under a cloak and is not diffracted by the object. This happens because the metamaterial that makes up the cloak stretches the metrics of space, in a similar way to what heavy planets and stars do for the metrics of space-time in Einstein’s general relativity theory.

“In order for the cloaking device to work in the first place light has to separate into two or more waves resulting in a new wave pattern. Within this pattern we get light and dark regions which are needed in order for an object to appear invisible.

“Until now, however, it was not clear whether photons – particles that make up all forms of light – can split and form new waves when the light source is close to the object. If we use ray optic techniques – where light travels in beams - photons break down at close range and the object does not appear invisible. If we study light as it travels in waves however, invisibility is maintained.”

Scientists predict that invisibility will be possible for objects of any shape and size within the next decade.

The research findings are published in Optic Letters.

Samantha Martin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>