Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrashort light pulse blazes new paths for science, industry

03.05.2007
Researchers in Italy have created an ultrashort light pulse—a single isolated burst of extreme-ultraviolet light that lasts for only 130 attoseconds (billionths of a billionth of a second).

Their achievement currently represents the shortest artificial light pulse that has been reported in a refereed journal. Shining this ultrashort light pulse on atoms and molecules can reveal new details of their inner workings—providing benefits to fundamental science as well as potential industrial applications such as better controlling chemical reactions. Working at Italy's National Laboratory for Ultrafast and Ultraintense Optical Science in Milan (as well as laboratories in Padua and Naples), the researchers believe that their current technique will allow them to create even shorter pulses well below 100 attoseconds. Results will be presented in Baltimore at CLEO/QELS, May 6 – May 11.

Whereas humans perceive the world in terms of seconds and minutes, the electrons in atoms and molecules often perform actions on attosecond time scales. How short is this? 130 attoseconds is to one second as a second is to approximately 243 million years—roughly the time that has passed since the first dinosaurs walked the Earth. Aiming a human-made attosecond-scale light pulse on atoms and molecules can trigger new effects in electrons—which are responsible for all chemical reactions—and provide new details on how they work.

In previous experiments, longer pulses, in the higher hundreds of attoseconds, have been created, and the general process is the same. An intense infrared laser strikes a jet of gas, usually argon or neon. The laser’s powerful electric fields rock the electrons back and forth, causing them to release a train of attosecond pulses consisting of high-energy photons in the extreme ultraviolet or soft x-ray part of the spectrum.

Creating a single isolated attosecond pulse, rather than a train of them, is more complex. To do this, the researchers employ their previously developed technique for delivering intense short (5 femtoseconds, or millionths of a billionth of a second) laser pulses to an argon gas target. They use additional optical techniques (including ones borrowed from the research that won the 2005 Nobel Prize in Physics) for creating and shaping a single attosecond pulse. These isolated attosecond pulses promise to probe electron phenomena such as "wavepackets"—specially tailored electron waves inside atoms and molecules that may help scientists use lasers to change the course of chemical reactions for scientific and practical uses, such as controlling the breaking of bonds in complex molecules for medical and pharmaceutical applications.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org
http://www.cleoconference.org

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>