Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray holograms expose secret magnetism

03.05.2007
Collaborative research between scientists in the UK and USA has led to a major breakthrough in the understanding of antiferromagnets, published in this week’s Nature. Scientists at the London Centre for Nanotechnology, the University of Chicago and the Center for Nanoscale Materials at Argonne National Laboratory have used x-rays to see the internal workings of antiferromagnets for the very first time.

Unlike conventional magnets, antiferromagnets (such as the metal chromium) are materials which exhibit ‘secret’ magnetism, undetectable at a macroscopic level. Instead, their magnetism is confined to very small regions where atoms behave as tiny magnets. They spontaneously align themselves opposite to adjacent atoms, leaving the material magnetically neutral overall.

Professor Gabriel Aeppli, Director of the London Centre for Nanotechnology, said: “People have been familiar with ferromagnets for hundreds of years and they have countless everyday uses; everything from driving electrical motors to storing information on hard disk drives. We haven’t been able to make the same strides with antiferromagnets because we weren’t able to look inside them and see how they were ordered.

“This breakthrough takes our understanding of the internal dynamics of antiferromagnets to where we were ninety years ago with ferromagnets. Once you can see something, it makes it that much easier to start engineering it.”

The magnetic characteristics of ferromagnets have been studied by scientists since Greek antiquity, enabling them to build up a detailed picture of the regions - or “magnetic domains” - into which they are divided. However, antiferromagnets remained a mystery because their internal structure was too fine to be measured.

The internal order of antiferromagnets is on the same scale as the wavelength of x-rays (below 10 nanometers). The latest research used x-ray photon correlation spectroscopy to produce ‘speckle’ patterns; holograms which provide a unique ‘fingerprint’ of a particular magnetic domain configuration.

Dr. Eric D. Isaacs, Director of the Center for Nanoscale Materials, said: “Since the discovery of x-rays over 100 years ago, it has been the dream of scientists and engineers to use them to make holographic images of moving objects, such as magnetic domains, at the nanoscale.

“This has only become possible in the last few years with the availability of sources of coherent x-rays, such as the Advanced Photon Source, and the future looks even brighter with the development of fully coherent x-ray sources called Free Electron Lasers over the next few years.”

In addition to producing the first antiferromagnet holograms, the research also showed that their magnetic domains shift over time, even at the lowest of temperatures. The most likely explanation for this can be found in quantum mechanics and the experiments open the door to the future exploitation of antiferromagnets in emerging technologies such as quantum computing.

“The key finding of our research provides information on the stability of domain walls in antiferromagnets,” said Oleg Shpyrko, lead author on the publication and researcher at the Center for Nanoscale Materials. “Understanding this is the first step towards engineering antiferromagnets into useful nanoscale devices that exploit it.”

Work at the London Centre for Nanotechnology was funded by a Royal Society Wolfson Research Merit Award and the Basic Technologies program of Research Councils UK. Work at the Center for Nanoscale Materials and the Advanced Photon Source was supported by the DOE Office of Science, Office of Basic Energy Sciences. The work at the University of Chicago was supported by the National Science Foundation.

David Weston | alfa
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>