Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic fields on a conveyor belt

Scientists at the Paul Drude Institute for Solid State Electronics (PDI) in Berlin have shown how extremely small and intensive magnetic fields can be manipulated.

The scientists lead by Dr. Carsten Hucho found a way to move smallest possible magnetic entities – so-called flux quanta – with the help of acoustic waves. Their results may open new ways to process data. The study is published in the Journal Solid State Communications (Vol. 142, p. 212).

Currently, electrons are used to transport information and process data but scientists are looking for alternatives. One possibility is the use of the magnetic properties of electrons, the so-called spin. Another avenue is the magnetic flux. „You cannot pin down single electrons“, says Carsten Hucho, „and their spin-orientation is not permanent.” Both problems can be avoided by using flux quanta in superconductors. These tiny magnetic fields, also called vortices, remain stable for a long time – theoretically infinite. ”We can keep track of an individual flux quantum – and now we can move the flux around”, says Hucho.

The scientists at PDI managed to transport magnetic flux quanta with a surface acoustic wave. The vortices move with the soundwave like on a conveyor-belt. So will these new findings accelerate the development of so-called “fluxtronics” after electronics and spintronics? Hucho cautions that “there is still a long way to go.” The main goal of the study was to show that magnetic flux quanta in superconductors can be manipulated in a well-defined way.

This possibility of manipulating the vortex motion and vortex density by a dynamic external parameter has far-reaching technological consequences besides the storage and processing of data. For instance, tiny magnetic particles could be transported in some sort of conveyor belt. “This would be of interest for molecular analytics in a so-called lab on a chip”, says Hucho.

Josef Zens | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>