Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Adaptive Optics Technique Demonstrated

02.04.2007
First ever Multi-Conjugate Adaptive Optics at the VLT Achieves First Light

On the evening of 25 March 2007, the Multi-Conjugate Adaptive Optics Demonstrator (MAD) achieved First Light at the Visitor Focus of Melipal, the third Unit Telescope of the Very Large Telescope (VLT). MAD allowed the scientists to obtain images corrected for the blurring effect of atmospheric turbulence over the full 2x2 arcminute field of view. This world premiere shows the promises of a crucial technology for Extremely Large Telescopes.

Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images.

However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., approaching space conditions. Adaptive Optics systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a 'wavefront sensor' (a special camera) at very high speed, many hundreds of times each second.

The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON") was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program to serve the needs for its frontline VLT project. Today, the Paranal Observatory is without any doubt one of the most advanced of its kind with respect to AO with no less than 7 systems currently installed (NACO, SINFONI, CRIRES and four AO systems for the interferometric mode of the VLT).

Present AO systems can only correct the effect of atmospheric turbulence in a relative small region of the sky - typically 15 arcseconds, the correction degrading very quickly when moving away from the central axis. Engineers have therefore developed new techniques to overcome this limitation, one of which is multi-conjugate adaptive optics (MCAO). At the end of 2003, ESO, together with partners in Italy and Portugal, started the development of a MCAO Demonstrator, named MAD.

"The aim of MAD is to prove the feasibility and performances of new adaptive optics techniques, such as MCAO, meant to work on large fields of view and to serve as a very powerful test tool in understanding some of the critical issues that will determine the development of future instruments, for both the VLT and the Extremely Large Telescopes," said Norbert Hubin, head of the AO group at ESO.

MAD is an advanced generation adaptive optics system, capable of compensating for the atmospheric turbulence disturbance on a large field of view (FoV) on the sky. It can successfully correct a 1-2 arcmin FoV, much larger than the ~15 arcsec typically provided by the existing adaptive optics facilities.

MAD was fully developed and extensively characterized by ESO using a dedicated turbulence generator (MAPS, Multi Atmospheric Phase screens and Stars) able to reproduce in the laboratory the temporal evolution and the vertical structure of the turbulence observed at the Observatory.

MAD was then disassembled and shipped to Paranal for re-integration at the Nasmyth Visitor focus of UT3. The integration took about 1 month, after which the system was ready for daylight testing and further characterization.

"On the night of 25 March, we could successfully close the first MCAO loop on the open cluster NGC 3293," said Enrico Marchetti, the MAD Project Manager. "The system behaviour was very stable and the acquisition and closed loop operations were fast and smooth."

After routine checks on the closed loop stability and preliminary scans of the system parameters, the telescope was pointed to Omega Centauri, a very crowded area in the sky, and an optimal test case for extracting accurate measurements on AO correction performance with good spatial resolution on the FoV. Three 11 magnitude stars within a circle of ~1.5 arcmin diameter were selected as the baseline for wavefront sensing and the MCAO loop was closed successfully. Omega Centauri will be observed for several nights more, in order to test the AO correction in different seeing conditions.

"This is a tremendous achievement that opens new perspectives in the era of extremely large telescopes," said Catherine Cesarsky, ESO's Director General. "I am very proud of this ESO achievement and would like to congratulate all the involved staff for their prowess," she added.

The MAD images perfectly show the validity of the concept. The image quality was almost uniform over the whole field of view and beautifully corrected for some of the atmospheric turbulence.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2007/phot-19-07.html

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>