Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spacecraft rendezvous at Jupiter

28.02.2002


Currents between Jupiter’s poles and three of its moons mark its auroras.
© NSAS/JPL


Cassini’s image of the looping magnetic fields that surround Jupiter.
© NSAS/JPL


Two space probes lift the lid on Jupiter’s magnetosphere.
Even Stanley Kubrick couldn’t have directed it better. In the first days of 2001, two spacecraft, Cassini and Galileo, met at Jupiter 400 million kilometres from Earth, to study the mysterious forces emanating from the giant planet.

The first analysis of the data they sent back has now been unveiled1-7. It paints a dramatic picture of the planet’s invisible magnetosphere - looping magnetic fields, crackling radio emissions and intense belts of radiation surround Jupiter and interact with the solar wind and the planet itself.


Consisting only of charged particles and magnetic field lines, magnetospheres are best studied close up. "You really need to be in it to measure what’s going on," says Linda Spilker, deputy project scientist for the Cassini mission.

Cassini approached Jupiter from the direction of the incoming solar wind - the continuous blast of charged particles that stream out of the Sun. For the first time, the spacecraft recorded shifts in the wind while Galileo measured the responses of Jupiter’s magnetosphere.

Apparently, gusts of solar wind cause Jupiter’s magnetosphere to expand and contract like a giant balloon3. Simultaneous observations from the Hubble and Chandra space telescopes show that these compressions brighten the planet’s giant aurora. The aurora, which is like Earth’s northern and southern lights, dims as the pressure lessens1.

The probes also spotted electrons propelled by the planet’s magnetic field, whipping through Jupiter’s radiation belts at close to the speed of light2. Only a Jupiter-sized planet can generate magnetic fields strong enough to do this.

Astronomers will be reassured by the findings, for they agree with observations of Earth’s well-studied magnetosphere, which is routinely used to predict the behaviour of more distant planets.

Perhaps the most beautiful finding was of bright arcs of light traced through Jupiter’s aurora. The circling sprites arise when Jupiter’s moons, Io, Ganymede and Europa, emit giant tubes of charged particles. Jupiter’s magnetic fields suck these particles from the moons’ atmospheres down to the planet’s poles where they interact with one another, emitting an ethereal glow5.



Chance meeting

The cosmic conjunction wasn’t planned. Cassini was waltzing past Jupiter, using the giant’s gravitational energy to send it on to its final destination, Saturn. Galileo, an ageing probe that had been closely orbiting Jupiter and was thought to have stopped working, was found to be still going strong.

Planetary scientists "seized the opportunity offered by this first-ever conjunction of two spacecraft at an outer planet", says Thomas Hill, of Rice University in Houston, Texas.

"There will be people looking at the data for many years," says Spilker. Which is just as well. Another such rendezvous "would not be repeated for the foreseeable future", says Cassini project scientist Dennis Matson.

The chance meeting was short-lived. Cassini has since flown on towards Saturn, due to arrive there in 2004. Galileo will make the ultimate sacrifice and descend into Jupiter’s atmosphere late next year.

References

  1. Gurnett, D. A. et al Control of Jupiter’s radio emission and aurorae by the solar wind. Nature, 415, 985 - 987, (2002).
  2. Bolton, S. J. et al Ultra-relativistic electrons in Jupiter’s radiation belts. Nature, 415, 987 - 991, (2002).
  3. Kurth, W. S. et al The dusk flank of Jupiter’s magnetosphere. Nature, 415, 991 - 994, (2002).
  4. Krimigis, S. M. et al A nebula of gases from Io surrounding Jupiter. Nature, 415, 994 - 996, (2002).
  5. Clarke, J. T. et al. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415, 997 - 1000, (2002).
  6. Gladstone, G. R. et al.A pulsating auroral X-ray hot spot on Jupiter. Nature, 415, 1000 - 1003, (2002).
  7. Mauk, B. H. et al. Transient aurora on Jupiter from injections of magnetospheric electrons. Nature, 415, 1003 - 1005, (2002).


TOM CLARKE | © Nature News Service

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>