Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atom chip devices to be developed as result of grant award

16.03.2007
A grant awarded this month could develop atom chip devices which could bring quantum computing closer to a reality.

Dr Michael Kraft at the University of Southampton’s School of Electronics & Computer Science (ECS) and Professor Edward Hinds at Imperial College, London, have been awarded a £1.2 million Basic Technology Translation Grant from the Engineering and Physical Sciences Research Council (EPSRC) to develop atom chip devices.

Their task is to take the toolbox of basic atom chip building blocks which they have developed over the past four years and integrate them on a single chip so that they can be developed into systems robust enough to perform useful functions.

The researchers have found that atom chips have potential uses in a variety of futuristic technologies. For example: sensors with unprecedented accuracy and sensitivity; quantum computing, which harnesses physical phenomenon unique to quantum mechanics to realise a new mode of information processing, and atom interferometers, instruments that exploit the wave characters of atoms.

Specific atom chip devices to be explored in this new research include atomic clocks, accelerometers, interferometers, magnetometers, single photon sources, quantum information processors and molecule traps.

‘Over the past four years, we have done the fundamental research into atom chips,’ said Dr Kraft. ‘Now it’s time to make application-orientated devices.’

According to Dr Kraft, although other international research groups have worked on atom chips, there are not yet any atom chip devices. He believes that this is a development which will be of benefit to industry and the wider community in the longer term.

‘There is a growing need for unprecedented accuracy in accelerometers and gyroscopes,’ he said. ‘Quantum information processors are potentially leading to quantum computers and atom chip devices will facilitate this process.’

The research which begins this month for a four-year period is a natural sequel to the Basic Technology Atom Chips project, on which Dr Kraft and Professor Hinds worked for the past four years, and it is the necessary step to allow the new basic technology to make contact with the commercial world.

Joyce Lewis | alfa
Further information:
http://www.ecs.soton.ac.uk/~mk1/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>