Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atom chip devices to be developed as result of grant award

16.03.2007
A grant awarded this month could develop atom chip devices which could bring quantum computing closer to a reality.

Dr Michael Kraft at the University of Southampton’s School of Electronics & Computer Science (ECS) and Professor Edward Hinds at Imperial College, London, have been awarded a £1.2 million Basic Technology Translation Grant from the Engineering and Physical Sciences Research Council (EPSRC) to develop atom chip devices.

Their task is to take the toolbox of basic atom chip building blocks which they have developed over the past four years and integrate them on a single chip so that they can be developed into systems robust enough to perform useful functions.

The researchers have found that atom chips have potential uses in a variety of futuristic technologies. For example: sensors with unprecedented accuracy and sensitivity; quantum computing, which harnesses physical phenomenon unique to quantum mechanics to realise a new mode of information processing, and atom interferometers, instruments that exploit the wave characters of atoms.

Specific atom chip devices to be explored in this new research include atomic clocks, accelerometers, interferometers, magnetometers, single photon sources, quantum information processors and molecule traps.

‘Over the past four years, we have done the fundamental research into atom chips,’ said Dr Kraft. ‘Now it’s time to make application-orientated devices.’

According to Dr Kraft, although other international research groups have worked on atom chips, there are not yet any atom chip devices. He believes that this is a development which will be of benefit to industry and the wider community in the longer term.

‘There is a growing need for unprecedented accuracy in accelerometers and gyroscopes,’ he said. ‘Quantum information processors are potentially leading to quantum computers and atom chip devices will facilitate this process.’

The research which begins this month for a four-year period is a natural sequel to the Basic Technology Atom Chips project, on which Dr Kraft and Professor Hinds worked for the past four years, and it is the necessary step to allow the new basic technology to make contact with the commercial world.

Joyce Lewis | alfa
Further information:
http://www.ecs.soton.ac.uk/~mk1/

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>