Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arizona Telescopes Will Focus On Pluto March 18

15.03.2007
Telescopes from Wyoming to Mexico City and from California to central Texas will point at Pluto as the dwarf planet occults a star in the Sagittarius constellation next Sunday.

University of Arizona astronomers will host colleagues from Paris Observatory, the Massachusetts Institute of Technology and Lowell Observatory at UA telescopes for the not-to-be-missed event.

Arizona has a special tie to Pluto: Astronomer Clyde Tombaugh was working for Lowell Observatory in Flagstaff when he discovered the ninth planet in 1930. Tombaugh was the only American ever to discover a planet in our solar system. The International Astronomical Union ignited public and scientific controversy last August when it downgraded Pluto's status to a dwarf planet known as number 134340.

But whatever you call it, the object interests planetary scientists.

"Occultations are the only way we can monitor the atmosphere of Pluto from the Earth," said Professor William B. Hubbard of UA's Lunar and Planetary Laboratory, who is coordinating the UA campaign to observe the Pluto occultation.

Not only are the observations important to scientists studying Pluto's atmosphere, Hubbard said, they're important to NASA's $620 million New Horizons spaceprobe, which just flew by Jupiter and is on target to reach Pluto and the Kuiper belt in 2015. Previous observations of Pluto occultations have yielded surprising findings about Pluto's changing air pressure, for example, Hubbard said, "so it's going to be important to keep track of what Pluto is doing until the spacecraft gets there."

An occultation is like an eclipse. Just as the moon casts its shadow onto Earth when it passes directly in front of the sun, planets cast their shadows onto Earth when they pass directly in front of a star. Hubbard, Bruno Sicardy of the Paris Observatory and Faith Vilas, who is now director of the MMT Observatory, discovered Neptune's rings in the 1980s, before Voyager detected them, from ground-based observations made during a Neptune occultation.

In past decades, astronomers could typically expect a Pluto occultation only every five to 10 years, Sicardy said. But now Pluto is moving in front of the Milky Way, and astronomers may see one or two Pluto occultations a year because of the abundance of background stars.

"But even though there are now more than one of these events per year, we can't count on seeing them all because of cloudy weather, or because Pluto's shadow falls on Earth where there are no observatories," Sicardy said.

"This time, the event is observable by a region of the world populated with great telescopes -- the southwestern United States," Sicardy said. "To observe this in Arizona is like closing a big loop after more than 70 years. It's kind of like celebrating Pluto's discovery," he added.

Pluto has a diameter of 2,775 kilometers, or about 1,400 miles, and is almost 40 times farther from the sun than the Earth is. It will pass in front of the star in Sagittarius at 4 a.m. Arizona time (11 Universal Time) on Sunday, March 18. The occultation will last six minutes -- about 3 times longer than typical Pluto occultations -- giving telescopes as small as 50 centimeters (20 inches) time to record the event.

If the telescope is aligned in the exact line of sight with the star when Pluto eclipses the starlight, its lucky astronomers might see the "central flash" phenomenon. They would see a sudden brightening, a flash, while entirely in Pluto's shadow. That could give them important information on the shape of Pluto's atmosphere or its winds, as well as a thrill.

All the visible light cameras are fast readout cameras with good time resolution, said Lunar and Planetary Laboratory scientist Steve Larson. He'll observe with the 61-inch Kuiper Telescope in the Santa Catalina Mountains north of Tucson. "This will help provide accurate timings of ingress, egress and a central flash if we are situated right," he noted.

Participating UA astronomers and telescopes include:

? The UA/Smithsonian Institution's 6.5-meter (260-inch) MMT on Mount Hopkins. Steward Observatory astronomers Donald W. McCarthy and Craig Kulesa will use a wide-field infrared camera called "PISCES" that may spot clouds or haze if they exist in Pluto's atmosphere. At the same time, Susan Kern and Michael Person of MIT will use a "POETS" camera loaned by Lowell Observatory to observe at optical wavelengths. POETS is an acronym for Portable Occultation Eclipse and Transit System. http://www.mmto.org/

? Bruno Sicardy will use a camera from his Paris Observatory on the 90-inch (2.3 meter) Bok Telescope on Kitt Peak. His visible light camera takes 10 frames per second. The Bok Telescope is the largest operated soley by the UA Steward Observatory. http://james.as.arizona.edu/%7Epsmith/90inch/90inch.html

? Catalina Sky Survey Director Steve Larson of UA's Lunar and Planetary Laboratory and Thomas Widemann of the Paris Observatory will observe with Steward Observatory's 61-inch (1.6 meter) Kuiper Telescope in the Santa Catalina Mountains north of Tucson. http://james.as.arizona.edu/~psmith/61inch/

? Rick Hill of UA's Lunar and Planetary Laboratory and Henry Roe of Lowell Observatory will use UA's 60-inch (1.5 meter) telescope on Steward Observatory's Mount Lemmon site. http://james.as.arizona.edu/~psmith/60inch/

Contact Information

William B. Hubbard 520-621-6942 hubbard@lpl.arizona.edu
Donald W. McCathy 520-621-4079 dmccarthy@as.arizona.edu
Steve Larson 520-621-4973 slarson@lpl.arizona.edu
Richard Hill 520-621-4077 rhill@lpl.arizona.edu
Bruno Sicardy http://www.lesia.obspm.fr/~sicardy/
Thomas Widemann http://www.lesia.obspm.fr/~widemann/
Related Web sites
6.5 meter MMT Observatory - http://www.mmto.org/
90-inch Bok - http://james.as.arizona.edu/%7Epsmith/90inch/90inch.html
61-inch Kuiper Telescope- http://james.as.arizona.edu/~psmith/61inch/
60-inch Mount Lemmon Telescope - http://james.as.arizona.edu/~psmith/60inch/

Lori Stiles | University of Arizona
Further information:
http://uanews.org/science

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>