Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arizona Telescopes Will Focus On Pluto March 18

15.03.2007
Telescopes from Wyoming to Mexico City and from California to central Texas will point at Pluto as the dwarf planet occults a star in the Sagittarius constellation next Sunday.

University of Arizona astronomers will host colleagues from Paris Observatory, the Massachusetts Institute of Technology and Lowell Observatory at UA telescopes for the not-to-be-missed event.

Arizona has a special tie to Pluto: Astronomer Clyde Tombaugh was working for Lowell Observatory in Flagstaff when he discovered the ninth planet in 1930. Tombaugh was the only American ever to discover a planet in our solar system. The International Astronomical Union ignited public and scientific controversy last August when it downgraded Pluto's status to a dwarf planet known as number 134340.

But whatever you call it, the object interests planetary scientists.

"Occultations are the only way we can monitor the atmosphere of Pluto from the Earth," said Professor William B. Hubbard of UA's Lunar and Planetary Laboratory, who is coordinating the UA campaign to observe the Pluto occultation.

Not only are the observations important to scientists studying Pluto's atmosphere, Hubbard said, they're important to NASA's $620 million New Horizons spaceprobe, which just flew by Jupiter and is on target to reach Pluto and the Kuiper belt in 2015. Previous observations of Pluto occultations have yielded surprising findings about Pluto's changing air pressure, for example, Hubbard said, "so it's going to be important to keep track of what Pluto is doing until the spacecraft gets there."

An occultation is like an eclipse. Just as the moon casts its shadow onto Earth when it passes directly in front of the sun, planets cast their shadows onto Earth when they pass directly in front of a star. Hubbard, Bruno Sicardy of the Paris Observatory and Faith Vilas, who is now director of the MMT Observatory, discovered Neptune's rings in the 1980s, before Voyager detected them, from ground-based observations made during a Neptune occultation.

In past decades, astronomers could typically expect a Pluto occultation only every five to 10 years, Sicardy said. But now Pluto is moving in front of the Milky Way, and astronomers may see one or two Pluto occultations a year because of the abundance of background stars.

"But even though there are now more than one of these events per year, we can't count on seeing them all because of cloudy weather, or because Pluto's shadow falls on Earth where there are no observatories," Sicardy said.

"This time, the event is observable by a region of the world populated with great telescopes -- the southwestern United States," Sicardy said. "To observe this in Arizona is like closing a big loop after more than 70 years. It's kind of like celebrating Pluto's discovery," he added.

Pluto has a diameter of 2,775 kilometers, or about 1,400 miles, and is almost 40 times farther from the sun than the Earth is. It will pass in front of the star in Sagittarius at 4 a.m. Arizona time (11 Universal Time) on Sunday, March 18. The occultation will last six minutes -- about 3 times longer than typical Pluto occultations -- giving telescopes as small as 50 centimeters (20 inches) time to record the event.

If the telescope is aligned in the exact line of sight with the star when Pluto eclipses the starlight, its lucky astronomers might see the "central flash" phenomenon. They would see a sudden brightening, a flash, while entirely in Pluto's shadow. That could give them important information on the shape of Pluto's atmosphere or its winds, as well as a thrill.

All the visible light cameras are fast readout cameras with good time resolution, said Lunar and Planetary Laboratory scientist Steve Larson. He'll observe with the 61-inch Kuiper Telescope in the Santa Catalina Mountains north of Tucson. "This will help provide accurate timings of ingress, egress and a central flash if we are situated right," he noted.

Participating UA astronomers and telescopes include:

? The UA/Smithsonian Institution's 6.5-meter (260-inch) MMT on Mount Hopkins. Steward Observatory astronomers Donald W. McCarthy and Craig Kulesa will use a wide-field infrared camera called "PISCES" that may spot clouds or haze if they exist in Pluto's atmosphere. At the same time, Susan Kern and Michael Person of MIT will use a "POETS" camera loaned by Lowell Observatory to observe at optical wavelengths. POETS is an acronym for Portable Occultation Eclipse and Transit System. http://www.mmto.org/

? Bruno Sicardy will use a camera from his Paris Observatory on the 90-inch (2.3 meter) Bok Telescope on Kitt Peak. His visible light camera takes 10 frames per second. The Bok Telescope is the largest operated soley by the UA Steward Observatory. http://james.as.arizona.edu/%7Epsmith/90inch/90inch.html

? Catalina Sky Survey Director Steve Larson of UA's Lunar and Planetary Laboratory and Thomas Widemann of the Paris Observatory will observe with Steward Observatory's 61-inch (1.6 meter) Kuiper Telescope in the Santa Catalina Mountains north of Tucson. http://james.as.arizona.edu/~psmith/61inch/

? Rick Hill of UA's Lunar and Planetary Laboratory and Henry Roe of Lowell Observatory will use UA's 60-inch (1.5 meter) telescope on Steward Observatory's Mount Lemmon site. http://james.as.arizona.edu/~psmith/60inch/

Contact Information

William B. Hubbard 520-621-6942 hubbard@lpl.arizona.edu
Donald W. McCathy 520-621-4079 dmccarthy@as.arizona.edu
Steve Larson 520-621-4973 slarson@lpl.arizona.edu
Richard Hill 520-621-4077 rhill@lpl.arizona.edu
Bruno Sicardy http://www.lesia.obspm.fr/~sicardy/
Thomas Widemann http://www.lesia.obspm.fr/~widemann/
Related Web sites
6.5 meter MMT Observatory - http://www.mmto.org/
90-inch Bok - http://james.as.arizona.edu/%7Epsmith/90inch/90inch.html
61-inch Kuiper Telescope- http://james.as.arizona.edu/~psmith/61inch/
60-inch Mount Lemmon Telescope - http://james.as.arizona.edu/~psmith/60inch/

Lori Stiles | University of Arizona
Further information:
http://uanews.org/science

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>