Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New grants put UK photonics group on stronger wavelength

Three grants totalling more than one million Euros have been awarded to Aston University in Birmingham, UK, to help revolutionise the use of fibre optic cables in engineering, medicine and telecommunications.

In one of the projects, experts at Aston's Photonics Research Group will use ultraviolet laser radiation to create sensing devices known as fibre Bragg gratings inside plastic optical fibres, enabling the fibres to be used to accurately measure temperature inside the human body or determine stresses and strains in aircraft wings and also bridges.

The major goal of the second project is development of new fabrication technology for waveguide-microchip lasers. Fabrication of a compact and robust laser with monolithic cavity based on crystals doped with rare-earth or transition metal ions is the target of the project. The developed technology will promote miniaturization of solid state lasers and will facilitate their integration in electronic systems.

The third project targets prototype all-optical regeneration solutions related both to optical fibre networks and optical interconnects.

The awards have been given through an EU funded competition within the Sixth Framework Human Resources and Mobility Programme, known as the Marie Curie Actions. The Photonics Research Group has been awarded two Marie Curie Incoming International Fellowships, hosted by Dr. D.J. Webb and Prof. I. Bennion; and one Marie Curie Chair hosted by Prof. S.K. Turitsyn. Under the grants experts Dr A Okhrimchuk of the Russian Academy of Science, Dr H Liu of the University of New South Wales in Sydney and Prof. V Grigoryan from Northwestern University, USA will join the Photonics Research Group to help perfect new optical technologies.

Fibre Bragg gratings are created by using laser radiation to write micron-sized structures inside an optical fibre - a 'light pipe' that traps photons in a small core, which is ten times smaller than a human hair. The grating then reflects light of only one wavelength back down the fibre, the precise wavelength depending on how much the fibre is strained or heated. The use of polymer as opposed to glass cables makes this process more flexible, extensive - it takes three times more strain than glass - and safer, as for instance the polymer cannot shatter inside the human body.

The first gratings in the new style fibres have been produced, attracting invitations for the research group to present keynote talks in Hong Kong, Brazil and France. The Photonics Research Group works with such companies as BAE, Airbus, France Telecom and Ericsson and also the Department of Trade and Industry.

"These three grants are a strong indication that there is something very special about the work we are doing here," said Prof. Sergei Turitsyn of the Photonics Research Group. "The fact that so many people want to work with us means we are fast becoming a centre of excellence in this field," he added.

His colleague Dr David Webb said: "The competition for the Marie Curie Actions is Europe-wide and the success rate of applications less than 20 percent, so it is clear the experts making the awards recognised the high standard of the environment and people here in the research group."

The internationally renowned Photonics Research Group, the second largest of its kind in the country, was formed in 1991 and has around 50 staff involved in research and development of applications-orientated telecommunications, sensors, fibre grating technology, nonlinear optics and bio-photonics.

Sally Hoban | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>