Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New grants put UK photonics group on stronger wavelength

14.03.2007
Three grants totalling more than one million Euros have been awarded to Aston University in Birmingham, UK, to help revolutionise the use of fibre optic cables in engineering, medicine and telecommunications.

In one of the projects, experts at Aston's Photonics Research Group will use ultraviolet laser radiation to create sensing devices known as fibre Bragg gratings inside plastic optical fibres, enabling the fibres to be used to accurately measure temperature inside the human body or determine stresses and strains in aircraft wings and also bridges.

The major goal of the second project is development of new fabrication technology for waveguide-microchip lasers. Fabrication of a compact and robust laser with monolithic cavity based on crystals doped with rare-earth or transition metal ions is the target of the project. The developed technology will promote miniaturization of solid state lasers and will facilitate their integration in electronic systems.

The third project targets prototype all-optical regeneration solutions related both to optical fibre networks and optical interconnects.

The awards have been given through an EU funded competition within the Sixth Framework Human Resources and Mobility Programme, known as the Marie Curie Actions. The Photonics Research Group has been awarded two Marie Curie Incoming International Fellowships, hosted by Dr. D.J. Webb and Prof. I. Bennion; and one Marie Curie Chair hosted by Prof. S.K. Turitsyn. Under the grants experts Dr A Okhrimchuk of the Russian Academy of Science, Dr H Liu of the University of New South Wales in Sydney and Prof. V Grigoryan from Northwestern University, USA will join the Photonics Research Group to help perfect new optical technologies.

Fibre Bragg gratings are created by using laser radiation to write micron-sized structures inside an optical fibre - a 'light pipe' that traps photons in a small core, which is ten times smaller than a human hair. The grating then reflects light of only one wavelength back down the fibre, the precise wavelength depending on how much the fibre is strained or heated. The use of polymer as opposed to glass cables makes this process more flexible, extensive - it takes three times more strain than glass - and safer, as for instance the polymer cannot shatter inside the human body.

The first gratings in the new style fibres have been produced, attracting invitations for the research group to present keynote talks in Hong Kong, Brazil and France. The Photonics Research Group works with such companies as BAE, Airbus, France Telecom and Ericsson and also the Department of Trade and Industry.

"These three grants are a strong indication that there is something very special about the work we are doing here," said Prof. Sergei Turitsyn of the Photonics Research Group. "The fact that so many people want to work with us means we are fast becoming a centre of excellence in this field," he added.

His colleague Dr David Webb said: "The competition for the Marie Curie Actions is Europe-wide and the success rate of applications less than 20 percent, so it is clear the experts making the awards recognised the high standard of the environment and people here in the research group."

The internationally renowned Photonics Research Group, the second largest of its kind in the country, was formed in 1991 and has around 50 staff involved in research and development of applications-orientated telecommunications, sensors, fibre grating technology, nonlinear optics and bio-photonics.

Sally Hoban | alfa
Further information:
http://www.aston.ac.uk

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>