Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison stellerator a step forward in plasma research

13.03.2007
A project by University of Wisconsin-Madison researchers has come one step closer to making fusion energy possible.

The research team, headed by electrical and computer engineering Professor David Anderson and research assistant John Canik, recently proved that the Helically Symmetric eXperiment (HSX), an odd-looking magnetic plasma chamber called a stellarator, can overcome a major barrier in plasma research, in which stellarators lose too much energy to reach the high temperatures needed for fusion.

Published in a recent issue of Physical Review Letters, the new results show that the unique design of the HSX in fact loses less energy, meaning that fusion in this type of stellarator could be possible.

Plasma is very hot, ionized gas that can conduct electricity - essentially, it's what stars are made of. If heated to the point of ignition, hydrogen ions could fuse into helium, the same reaction that powers the sun. This fusion could be a clean, sustainable and limitless energy source.

Current plasma research builds on two types of magnetic plasma confinement devices, tokamaks and stellarators. The HSX aims to merge the best properties of both by giving a more stable stellarator the confinement of a more energetically efficient tokamak. "The slower energy comes out, the less power you have to put in, and the more economical the reactor is," says Canik.

Tokamaks, the current leader in the fusion race, are powered by plasma currents, which provide part of the magnetic field that confines the plasma. However, they are prone to "disruptions."

"The problem is you need very large plasma currents and it's not clear whether we'll be able to drive that large of a current in a reactor-sized machine, or control it. It may blow itself apart," says Canik.

Stellarators do not have currents, and therefore no disruptions, but they tend to lose energy at a high rate, known as transport. The external magnetic coils used to generate the plasma-confining field are partially responsible for the high transport rates in conventional stellarators. The coils add some ripple to the magnetic field, and the plasma can get trapped in the ripple and lost.

The HSX is the first stellarator to use a quasi-symmetric magnetic field. The reactor itself looks futuristic: Twisted magnetic coils wrap around the warped doughnut-shaped chamber, with instruments and sensors protruding at odd angles. But the semi-helical coils that give the HSX its unique shape also direct the strength of the magnetic field, confining the plasma in a way that helps it retain energy.

The team designed and built the HSX with the prediction that quasisymmetry would reduce transport. As the team's latest research shows, that's exactly what it does. "This is the first demonstration that quasisymmetry works, and you can actually measure the reduction in transport that you get," says Canik.

These results excited and relieved the researchers who have spent years working on the project. "We all thought the machine would do what it's turning out to do, but there are a million reasons why it might not: the theory might be wrong, (or) we might have built it badly," says Anderson. "But everything is panning out and supporting the fact that the ideas on which it was based were correct, and really points the way of the future for the stellarator."

The next step for the project is to establish how much symmetry in the coils is necessary to achieve low transport rates. They hope to make the coils easier to engineer, with the mindset that the principles used in the HSX could someday be incorporated into fusion generators, the reason that Anderson and his team began designing the HSX 17 years ago.

"It's an exciting field. It's something where one can contribute positively to mankind with an energy source that's completely sustainable, doesn't involve nuclear proliferation or radioactive waste, with a limitless fuel supply," says Anderson. "Plus, the machines look cool."

David Anderson | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>