Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COLD safer than HOT

27.02.2002


Fires can devastate HOT forests.
© Getty Images


New theory shows that high performance needn’t mean high risk.

For man-made systems such as machines and markets, catastrophe lurks somewhere between high risk and high performance. US physicists may have found a way to strike the optimal balance1.

This trade-off is familiar to the financial world. Brokers develop investment portfolios to provide the best returns within a specified level of risk. Mark Newman and co-workers at the Santa Fe Institute in New Mexico have borrowed some ideas from the economic theories of risk aversion to create a general prescription for avoiding ruin.



As a simple model of a system where productivity is coupled to risk, the researchers considered forest management. A forester wants to plant trees densely enough to produce a high timber yield. But the denser the trees, the more susceptible a forest is to devastating fires. So forests include open spaces to limit fires.

In 1999, researchers showed that complex systems like this often have states of ’highly optimized tolerance’ or HOT2,3. In a HOT state, performance (tree yield, in this case) is as good as it can be, in the face of influences (such as forest fires) that potentially undermine it.

But a HOT system has an Achilles’ heel. It is typically fragile under perturbations for which it was not designed. For example, if the distribution of fire breaks or sparks alters slightly, a forest can become highly susceptible to fires and give a poor yield.

Newman’s team now points out that HOT designs have another drawback. The cost of an optimal performance is a high chance of a ruinous collapse. Catastrophic fires that burn nearly all the trees are rare, but not as rare as one would expect if fire size were random. The optimal state is a high-risk state: it gives good returns at the price of possible ruin.

Most engineers don’t want to run this risk. So Newman’s group has calculated how to design a system to optimize performance and almost eliminate the probability of ruinous events. They call this design principle ’constrained optimization with limited deviations’, or COLD.

Surprisingly, a COLD state can completely remove the danger of total ruin while sacrificing only a few per cent of the average yield relative to a HOT state. Newman and colleagues say that, as we are generally risk-averse, we are more likely to prefer COLD designs than HOT ones.

Nature, apparently, is more short-sighted. Ecosystems, for example, are often in HOT states They are catastrophically susceptible to rare disturbances not accounted for by natural selection - such as meteorite impacts.

References

  1. Newman, M. E. J., Girvan, M. & Farmer, J. D. Optimal design, robustness, and risk aversion. Preprint, (2002).
  2. Carlson, J. M. & Doyle, J. Highly optimized tolerance: a mechanism for power laws in designed systems. Physical Review E, 60, 1412 - 1427, (1999).
  3. Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in complex systems. Physical Review Letters, 84, 2529 - 2532, (2000).

    PHILIP BALL | © Nature News Service
    Further information:
    http://www.nature.com/nsu/020225/020225-3.html

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>