Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integral expands our view of the gamma-ray sky

21.02.2007
Integral's latest survey of the gamma-ray universe continues to change the way astronomers think of the high-energy cosmos. With over seventy percent of the sky now observed by Integral, astronomers have been able to construct the largest catalogue yet of individual gamma-ray-emitting celestial objects. And there is no end in sight for the discoveries.

Integral is the European Space Agency's latest orbiting gamma-ray observatory. Ever since Integral began scientific operations in 2003, the project team has been devoting a substantial proportion of its observing time to a survey of the gamma-ray universe.

"The gamma-ray sky is notoriously variable and extremely unpredictable," says Anthony Dean, University of Southampton, UK, one of the original proposers of the Integral mission. Hence, the need for Integral's constant vigilance and an accurate catalogue of all gamma-ray sources. With this, astronomers can target individual gamma-ray objects for more detailed, study.

For the past three and a half years, Integral has been collecting survey data. At the end of every year, the data has been turned into a catalogue of sources.

During the first year, it concentrated on the regions close to the centre of our galaxy and found more than 120 sources. During the following year, Integral broadened its reach and found almost 100 more sources.

Now Integral has observed over 70 percent of the sky, with a total exposure time of 40 million seconds. A European team of astronomers led by Antony Bird, University of Southampton, UK, have turned all three years' worth of data into the third Integral catalogue of gamma-ray sources. It contains a total of 421 gamma-ray objects. Most have been identified as either binary stars in our Galaxy containing exotic objects such as black holes and neutron stars, or active galaxies, far away in space. But a puzzling quarter of sources remain unidentified so far.

"I think many of these will turn out to be either star systems enshrouded in dust and gas, or cataclysmic variable stars," says Dean. Integral observes in the gamma-ray band so it can see through the intervening material. It has demonstrated that it can discover sources obscured at other wavelengths.

One surprise has been the efficiency with which Integral has detected just one minor subclass of cataclysmic variable stars (CVs), the so-called intermediate polars. Initially astronomers were not sure that CVs would emit gamma rays. Indeed, Integral has already shown that only about one percent of them do. "At the moment, the reason why this should be is totally mysterious," says Dean.

As its surveys points further from our Galaxy, so Integral increasingly sees the active galaxies. These represent about a tenth of all galaxies and each one has some kind of extraordinary activity taking place in its core. It is widely accepted that this activity is driven by a gigantic black hole sucking matter out of existence.

Roman Krivonos, Max-Planck-Institute für Astrophysik, Germany, and colleagues have used the Integral survey to show that AGN are concentrated in the same places that ordinary galaxies are found. Whilst this is not an unexpected result, it is the first time such an AGN distribution has been seen at high-energies.

"Integral represents a milestone in gamma-ray astronomy," says Dean. Thirty years ago, NASA’s Einstein observatory produced a catalogue of X-ray sources that became the standard reference document for all X-ray observatories – including ESA's XMM-Newton. "Integral is doing the same for gamma-ray astronomy," says Dean.

"We are in a golden age of gamma-ray astronomy," agrees Bird. And ESA's Integral is at the forefront of this brave new universe.

Christoph Winkler | alfa
Further information:
http://www.esa.int/SPECIALS/Integral/SEM0HNBE8YE_0.html

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>