Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU professor resolves Einstein's twin paradox

16.02.2007
Subhash Kak, Delaune Distinguished Professor of Electrical and Computer Engineering at LSU, recently resolved the twin paradox, known as one of the most enduring puzzles of modern-day physics.

First suggested by Albert Einstein more than 100 years ago, the paradox deals with the effects of time in the context of travel at near the speed of light. Einstein originally used the example of two clocks – one motionless, one in transit. He stated that, due to the laws of physics, clocks being transported near the speed of light would move more slowly than clocks that remained stationary.

In more recent times, the paradox has been described using the analogy of twins. If one twin is placed on a space shuttle and travels near the speed of light while the remaining twin remains earthbound, the unmoved twin would have aged dramatically compared to his interstellar sibling, according to the paradox.

“If the twin aboard the spaceship went to the nearest star, which is 4.45 light years away at 86 percent of the speed of light, when he returned, he would have aged 5 years. But the earthbound twin would have aged more than 10 years!” said Kak.

The fact that time slows down on moving objects has been documented and verified over the years through repeated experimentation. But, in the previous scenario, the paradox is that the earthbound twin is the one who would be considered to be in motion – in relation to the sibling – and therefore should be the one aging more slowly. Einstein and other scientists have attempted to resolve this problem before, but none of the formulas they presented proved satisfactory.

Kak’s findings were published online in the International Journal of Theoretical Science, and will appear in the upcoming print version of the publication. “I solved the paradox by incorporating a new principle within the relativity framework that defines motion not in relation to individual objects, such as the two twins with respect to each other, but in relation to distant stars,” said Kak. Using probabilistic relationships, Kak’s solution assumes that the universe has the same general properties no matter where one might be within it.

The implications of this resolution will be widespread, generally enhancing the scientific community’s comprehension of relativity. It may eventually even have some impact on quantum communications and computers, potentially making it possible to design more efficient and reliable communication systems for space applications.

For more information, please contact Subhash Kak at 225-578-5552 or kak@ece.lsu.edu.

Subhash Kak | EurekAlert!
Further information:
http://www.ece.lsu.edu.

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>