Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rosetta correctly lined up for critical Mars swingby

16.02.2007
ESA mission controllers have confirmed Rosetta is on track for a critical 250-km Mars swingby on 25 February. Engineers have started final preparations for the delicate operation, which includes an eclipse, a signal blackout, precise navigation and complex ground tracking.

Rosetta is scheduled to make its closest approach to Mars at 02:57 CET on Sunday, 25 February, using the Red Planet as a gravitational brake to reduce speed and alter trajectory as part of the spacecraft's complex, 10-year, 7.1-thousand-million-kilometre journey to comet 67P/Churyumov-Gerasimenko.

"Last Friday's engine firing went well. On Tuesday, we confirmed the spacecraft is on nominal track for the swingby. There is currently no need for additional engine burns, so the next manoeuvre slot, planned for the weekend, has been cancelled," said Paolo Ferri, Rosetta Flight Director, speaking at ESOC, ESA's Space Operations Centre in Darmstadt, Germany.

Communications blackout, eclipse as Rosetta passes behind Mars

Later today, the Flight Control Team is scheduled to begin charging Rosetta's batteries for the planned 25-minute eclipse during the swingby. During the eclipse, Rosetta's solar panels will be shadowed from sunlight by Mars, and all but essential systems will be turned off or placed into low-power modes.

Rosetta's original trajectory and engineering design did not include an eclipse, but unavoidable launch delays forced the trajectory to be replanned. Mission controllers working on Rosetta have spent months carefully planning and testing a low-power configuration which will allow the spacecraft to safely operate on batteries.

Further, ground controllers expect to lose contact with Rosetta for a tense 15-minute occultation, or blackout, starting at 03:14 CET on 25 February, as Rosetta passes behind Mars with respect to ground stations on Earth.

At closest approach, Rosetta will skim by Mars in a spectacular passage, a mere 250 km above the Red Planet. At this time, ESA's Mars Express will be some 11 042 kms away from Rosetta, while NASA's Mars Reconnaissance Orbiter will be about 7172 kms distant.

ESA-NASA cooperation for deep-space tracking

The intensive swing-by activities at ESOC have included a comprehensive tracking campaign to carefully plot Rosetta's position and trajectory.

Ranging and Doppler measurements from DSA 1, ESA's deep-space tracking station at New Norcia, Australia, have been augmented by data from NASA's DSN deep-space network. Both networks are using Delta DOR (Delta Differential One-Way Ranging) technology to precisely locate and track the spacecraft.

Delta DOR uses two widely separated ground antennas to simultaneously track a spacecraft and measure the time difference between signals arriving at the two stations. ESA first used the sophisticated technique to track Venus Express in 2006.

Bernhard Von Weyhe | alfa
Further information:
http://www.esa.int/rosetta
http://www.esa.int/SPECIALS/Rosetta/SEMKRCO2UXE_0.html

More articles from Physics and Astronomy:

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

nachricht Supersensitive through quantum entanglement
28.06.2017 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>