Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning could speed up radiation therapy for cancer patients

09.02.2007
A new computer-based technique could eliminate hours of manual adjustment associated with a popular cancer treatment.

In a paper published in the Feb. 7 issue of Physics in Medicine and Biology, researchers from Rensselaer Polytechnic Institute describe an approach that has the potential to automatically determine acceptable radiation plans in a matter of minutes, without compromising the quality of treatment.

"Intensity Modulated Radiation Therapy (IMRT) has exploded in popularity, but the technique can require hours of manual tuning to determine an effective radiation treatment for a given patient," said Richard Radke, assistant professor of electrical, computer, and systems engineering at Rensselaer. Radke is leading a team of engineers and medical physicists to develop a "machine learning" algorithm that could cut hours from the process.

A subfield of artificial intelligence, machine learning is based on the development of algorithms that allow computers to learn relationships in large datasets from examples. Radke and his coworkers have tested their algorithm on 10 prostate cancer patients. They found that for 70 percent of the cases, the algorithm automatically determined an appropriate radiation therapy plan in about 10 minutes.

"The main goal of radiation therapy is to irradiate a tumor with a very high dose, while avoiding all of the healthy organs," Radke said. He described early versions of radiation therapy as a "fire hose" approach, applying a uniform stream of particles to overwhelm cancer cells with radiation.

IMRT adds nuance and flexibility to radiation therapy, increasing the likelihood of treating a tumor without endangering surrounding healthy tissue. Each IMRT beam is composed of thousands of tiny "beamlets" that can be individually modulated to deliver the right level of radiation precisely where it is needed.

But the semi-automatic process of developing a treatment plan can be extremely time-consuming - up to about four hours for prostate cancer and up to an entire day for more complicated cancers in the head and neck, according to Radke.

A radiation planner must perform a CT scan, analyze the image to determine the exact locations of the tumor and healthy tissues, and define the radiation levels that each area should receive. Then the planner must give weight to various constraints set by a doctor, such as allowing no more than a certain level of radiation to hit a nearby organ, while assuring that the tumor receives enough to kill the cancerous cells.

This is currently achieved by manually determining the settings of up to 20 different parameters, or "knobs," deriving the corresponding radiation plan, and then repeating the process if the plan does not meet the clinical constraints. "Our goal is to automate this knob-turning process, saving the planner's time by removing decisions that don't require their expert intuition," said Radke.

The researchers first performed a sensitivity analysis, which showed that many of the parameters could be eliminated completely because they had little effect on the outcome of the treatment. They then showed that an automatic search over the smaller set of sensitive parameters could theoretically lead to clinically acceptable plans.

The procedure was put to the test by developing radiation plans for 10 patients with prostate cancer. In all 10 cases the process took between five and 10 minutes, Radke said. Four cases would have been immediately acceptable in the clinic; three needed only minor "tweaking" by an expert to achieve an acceptable radiation plan; and three would have demanded more attention from a radiation planner.

Radke and his coworkers plan to develop a more robust prototype that can be installed on hospital computers and evaluated in a clinical setting. He hopes to see a clinical prototype in the next few years. The researchers also plan to test the approach on tumors that are more difficult to treat with radiation therapy, such as head and neck cancers.

In a related project, Radke is collaborating with colleagues at Boston's Massachusetts General Hospital to create computer vision algorithms that offer accurate estimates of the locations of tumors. This automatic modeling and segmentation process could help radiation planning at an earlier stage by automatically outlining organs of interest in each image of a CT scan, which is another time-consuming manual step. Learn more about this project here: http://news.rpi.edu/update.do?artcenterkey=134.

Jason Gorss | EurekAlert!
Further information:
http://news.rpi.edu/update.do?artcenterkey=134

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>