Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning could speed up radiation therapy for cancer patients

09.02.2007
A new computer-based technique could eliminate hours of manual adjustment associated with a popular cancer treatment.

In a paper published in the Feb. 7 issue of Physics in Medicine and Biology, researchers from Rensselaer Polytechnic Institute describe an approach that has the potential to automatically determine acceptable radiation plans in a matter of minutes, without compromising the quality of treatment.

"Intensity Modulated Radiation Therapy (IMRT) has exploded in popularity, but the technique can require hours of manual tuning to determine an effective radiation treatment for a given patient," said Richard Radke, assistant professor of electrical, computer, and systems engineering at Rensselaer. Radke is leading a team of engineers and medical physicists to develop a "machine learning" algorithm that could cut hours from the process.

A subfield of artificial intelligence, machine learning is based on the development of algorithms that allow computers to learn relationships in large datasets from examples. Radke and his coworkers have tested their algorithm on 10 prostate cancer patients. They found that for 70 percent of the cases, the algorithm automatically determined an appropriate radiation therapy plan in about 10 minutes.

"The main goal of radiation therapy is to irradiate a tumor with a very high dose, while avoiding all of the healthy organs," Radke said. He described early versions of radiation therapy as a "fire hose" approach, applying a uniform stream of particles to overwhelm cancer cells with radiation.

IMRT adds nuance and flexibility to radiation therapy, increasing the likelihood of treating a tumor without endangering surrounding healthy tissue. Each IMRT beam is composed of thousands of tiny "beamlets" that can be individually modulated to deliver the right level of radiation precisely where it is needed.

But the semi-automatic process of developing a treatment plan can be extremely time-consuming - up to about four hours for prostate cancer and up to an entire day for more complicated cancers in the head and neck, according to Radke.

A radiation planner must perform a CT scan, analyze the image to determine the exact locations of the tumor and healthy tissues, and define the radiation levels that each area should receive. Then the planner must give weight to various constraints set by a doctor, such as allowing no more than a certain level of radiation to hit a nearby organ, while assuring that the tumor receives enough to kill the cancerous cells.

This is currently achieved by manually determining the settings of up to 20 different parameters, or "knobs," deriving the corresponding radiation plan, and then repeating the process if the plan does not meet the clinical constraints. "Our goal is to automate this knob-turning process, saving the planner's time by removing decisions that don't require their expert intuition," said Radke.

The researchers first performed a sensitivity analysis, which showed that many of the parameters could be eliminated completely because they had little effect on the outcome of the treatment. They then showed that an automatic search over the smaller set of sensitive parameters could theoretically lead to clinically acceptable plans.

The procedure was put to the test by developing radiation plans for 10 patients with prostate cancer. In all 10 cases the process took between five and 10 minutes, Radke said. Four cases would have been immediately acceptable in the clinic; three needed only minor "tweaking" by an expert to achieve an acceptable radiation plan; and three would have demanded more attention from a radiation planner.

Radke and his coworkers plan to develop a more robust prototype that can be installed on hospital computers and evaluated in a clinical setting. He hopes to see a clinical prototype in the next few years. The researchers also plan to test the approach on tumors that are more difficult to treat with radiation therapy, such as head and neck cancers.

In a related project, Radke is collaborating with colleagues at Boston's Massachusetts General Hospital to create computer vision algorithms that offer accurate estimates of the locations of tumors. This automatic modeling and segmentation process could help radiation planning at an earlier stage by automatically outlining organs of interest in each image of a CT scan, which is another time-consuming manual step. Learn more about this project here: http://news.rpi.edu/update.do?artcenterkey=134.

Jason Gorss | EurekAlert!
Further information:
http://news.rpi.edu/update.do?artcenterkey=134

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>