Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Machine learning could speed up radiation therapy for cancer patients

A new computer-based technique could eliminate hours of manual adjustment associated with a popular cancer treatment.

In a paper published in the Feb. 7 issue of Physics in Medicine and Biology, researchers from Rensselaer Polytechnic Institute describe an approach that has the potential to automatically determine acceptable radiation plans in a matter of minutes, without compromising the quality of treatment.

"Intensity Modulated Radiation Therapy (IMRT) has exploded in popularity, but the technique can require hours of manual tuning to determine an effective radiation treatment for a given patient," said Richard Radke, assistant professor of electrical, computer, and systems engineering at Rensselaer. Radke is leading a team of engineers and medical physicists to develop a "machine learning" algorithm that could cut hours from the process.

A subfield of artificial intelligence, machine learning is based on the development of algorithms that allow computers to learn relationships in large datasets from examples. Radke and his coworkers have tested their algorithm on 10 prostate cancer patients. They found that for 70 percent of the cases, the algorithm automatically determined an appropriate radiation therapy plan in about 10 minutes.

"The main goal of radiation therapy is to irradiate a tumor with a very high dose, while avoiding all of the healthy organs," Radke said. He described early versions of radiation therapy as a "fire hose" approach, applying a uniform stream of particles to overwhelm cancer cells with radiation.

IMRT adds nuance and flexibility to radiation therapy, increasing the likelihood of treating a tumor without endangering surrounding healthy tissue. Each IMRT beam is composed of thousands of tiny "beamlets" that can be individually modulated to deliver the right level of radiation precisely where it is needed.

But the semi-automatic process of developing a treatment plan can be extremely time-consuming - up to about four hours for prostate cancer and up to an entire day for more complicated cancers in the head and neck, according to Radke.

A radiation planner must perform a CT scan, analyze the image to determine the exact locations of the tumor and healthy tissues, and define the radiation levels that each area should receive. Then the planner must give weight to various constraints set by a doctor, such as allowing no more than a certain level of radiation to hit a nearby organ, while assuring that the tumor receives enough to kill the cancerous cells.

This is currently achieved by manually determining the settings of up to 20 different parameters, or "knobs," deriving the corresponding radiation plan, and then repeating the process if the plan does not meet the clinical constraints. "Our goal is to automate this knob-turning process, saving the planner's time by removing decisions that don't require their expert intuition," said Radke.

The researchers first performed a sensitivity analysis, which showed that many of the parameters could be eliminated completely because they had little effect on the outcome of the treatment. They then showed that an automatic search over the smaller set of sensitive parameters could theoretically lead to clinically acceptable plans.

The procedure was put to the test by developing radiation plans for 10 patients with prostate cancer. In all 10 cases the process took between five and 10 minutes, Radke said. Four cases would have been immediately acceptable in the clinic; three needed only minor "tweaking" by an expert to achieve an acceptable radiation plan; and three would have demanded more attention from a radiation planner.

Radke and his coworkers plan to develop a more robust prototype that can be installed on hospital computers and evaluated in a clinical setting. He hopes to see a clinical prototype in the next few years. The researchers also plan to test the approach on tumors that are more difficult to treat with radiation therapy, such as head and neck cancers.

In a related project, Radke is collaborating with colleagues at Boston's Massachusetts General Hospital to create computer vision algorithms that offer accurate estimates of the locations of tumors. This automatic modeling and segmentation process could help radiation planning at an earlier stage by automatically outlining organs of interest in each image of a CT scan, which is another time-consuming manual step. Learn more about this project here:

Jason Gorss | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>