Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists Achieve All-Optical Buffering of Images

Researchers at the University of Rochester have demonstrated that optical pulses in an imaging system can be buffered in a slow-light medium, while preserving the information of the image.

The ability to delay an entire image and retrieve it intact opens a new avenue in optical buffering—short-term storage of information as optical images. While the initial test image consists of only a few hundred pixels, a tremendous amount of information can be buffered with the new technique.

Slow-light systems have been a topic of recent interest because of their potential application in signal-processing, including all-optical buffers. University scientists used a dilute cesium vapor inside a four-inch glass cell with temperatures at about the boiling point of water to slow the light.

Much of the research into slow-light buffers has been to delay binary signals. The Rochester group demonstrated that entire images can also be buffered.

"Instead of delaying ones and zeros, we're delaying an entire image," says John Howell, assistant professor of physics and leader of the team that created the device, described in the Jan. 22 online issue of the journal Physical Review Letters. "It's analogous to the difference between snapping a picture with a single pixel and doing it with a camera—this is the optical-buffering equivalent of a six-megapixel camera."

The researchers use very weak pulses, which are three meters long and a few millimeters in diameter. Each pulse contains less than one photon on average, which means sometimes no photons will be detected, sometimes one photon will be detected, and occasionally multiple photons will be detected. Every second, three million pulses pass through a stencil with the letters "UR" for the University of Rochester. The pulses travel through the cesium vapor where they are slowed up to 300 times slower than in air.

The image of the stencil is formed by scanning a fiber across the imaging plane. The fiber collects image information one pixel at a time. Over a hundred million pulses were used to reconstruct the image.

"The parallel amount of information John has sent all at once in an image is enormous in comparison to what anyone else has done before."

"When we turned the power of the pulses up so that we had many photons per pulse, we used a CCD camera, rather than a scanning fiber, to show that much higher resolution images could be formed in the system," says Irfan Ali-Khan, a co-author on the paper. "Additionally, we were able to demonstrate that the phase of the image was also preserved, which is an exciting result."

"You can have a tremendous amount of information in a pulse of light, but normally if you try to buffer it, you can lose much of that information," says Ryan Camacho, Howell's graduate student and lead author on the article. "We're showing it's possible to pull out an enormous amount of information with a high signal-to-noise ratio even with very low light levels."

Howell's group used a completely new approach that preserves the properties of the pulse. The buffered pulse is essentially a near-perfect original; there is almost no distortion, no additional diffraction, and the phase and amplitude of the original signal are all preserved.

"The implication is that things like photonic entanglement will also remain intact," says Curtis Broadbent, co-author on the paper. "If that's the case, and we're working on showing that now, this approach may prove to be useful in quantum information settings."

"The parallel amount of information John has sent all at once in an image is enormous in comparison to what anyone else has done before," says Alan Willner, professor of electrical engineering at the University of Southern California and president of the IEEE Lasers and Optical Society. "To do that and be able to maintain the integrity of the signal—it's a wonderful achievement."

Howell has so far been able to delay light pulses 100 nanoseconds and compress them to 1 percent of their original length. He is now working toward delaying pulses by dozens of pulse lengths for as long as several milliseconds, and delaying terahertz bandwidth pulses by well over 1,000 pulse lengths.

Jonathan Sherwood | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>