Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theoretical Physicists Develop Test for String Theory

26.01.2007
For decades, many scientists have criticized string theory, pointing out that it does not make predictions by which it can be tested.

Now, researchers at Carnegie Mellon University; the University of California, San Diego; and The University of Texas at Austin have developed a test of string theory. Their test, described in the Jan. 26 Physical Review Letters, involves measurements of how elusive high-energy particles scatter during particle collisions. Most physicists believe that collisions will be observable at the Large Hadron Collider (LHC), which is set to turn on later this year at the European Laboratory for Particle Physics, commonly known as CERN.

"Our work shows that, in principle, string theory can be tested in a nontrivial way," explained Ira Rothstein, co-author of the paper and professor of physics at Carnegie Mellon.

Rothstein and colleagues Jacques Distler, professor of physics at The University of Texas at Austin; Benjamin Grinstein, professor of physics at the University of California, San Diego; and Carnegie Mellon graduate student Rafael Porto developed their test based on studies of how strongly W bosons scatter in high-energy particle collisions generated within a particle accelerator. W bosons are special because they carry a property called the weak force, which provides a fundamental way for particles to interact with one another.

When the LHC turns on later this year, scientists will begin to investigate the scattering of W bosons, which has not been possible with other particle accelerators. Because the new test follows from a measurement of W boson scattering, it could eventually be performed at the LHC, according to the authors.

"The beauty of our test is the simplicity of its assumptions," explained Grinstein. "The canonical forms of string theory include three mathematical assumptions — Lorentz invariance (the laws of physics are the same for all uniformly moving observers), analyticity (a smoothness criteria for the scattering of high-energy particles after a collision) and unitarity (all probabilities always add up to one). Our test sets bounds on these assumptions.

"If the test does not find what the theory predicts about W boson scattering," he added, "it would be evidence that one of string theory's key mathematical assumptions is violated. In other words, string theory — as articulated in its current form — would be proven impossible."

"If the bounds are satisfied, we would still not know that string theory is correct," Distler said. "But if the bounds are violated, we would know that string theory, as it is currently understood, could not be correct. At the very least, the theory would have to be reshaped in a highly nontrivial way."

String theory attempts to unify nature's four fundamental forces — gravity, electromagnetism, and the strong and weak forces — by positing that everything at the most basic level consists of strands of energy that vibrate at various rates and in multiple, undiscovered dimensions. These "strings" produce all known forces and particles in the universe, thus reconciling Einstein's theory of general relativity (the large) with quantum mechanics (the small).

Proponents say that string theory is elegant and beautiful. Dissenters argue that it does not make predictions that can be tested experimentally, so the theory cannot be proven or falsified. And no particle accelerator yet exists that can attain the high energies needed to detect strings. Because of this technical limitation, tests of string theory have remained elusive until now.

"Since we don't have a complete understanding of string theory, it's impossible to rule out all possible models that are based on strings. However, most string theory models are based upon certain mathematical assumptions, and what we've shown is that such string theories have some definite predictions that can be tested," Rothstein said.

Lauren Ward | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>