Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for easily identifying explosives in luggage

22.01.2007
Scientists in Japan have developed a new technique for sensing explosives in luggage and landmines. The paper, published today in the Institute of Physics journal Superconductor Science and Technology describes how radio waves can be used to identify specific explosives, such as TNT. The new method could be used in future to screen baggage at airports.

The new technique has advantages over traditional methods of detection: unlike x-rays that are currently used in airport security, it can distinguish between different types of white powder from flour and salt to drugs and explosives. It can also be used to detect landmines, an advance on the traditional method of using a metal detector which cannot distinguish between bits of metal in the ground and an actual mine.

Professor Hideo Itozaki, one of the authors of the paper at Osaka University said: “Until now it has been very difficult to detect specific explosives such as TNT because they contain atoms of nitrogen that vibrate at very low frequencies. The natural frequency at which the nucleus of an atom vibrates at is called its resonant frequency and the lower this is, the harder it is to detect what atoms are present in a molecule which in turn makes it harder to define what the molecule or substance is.”

The technique relies on nitrogen nuclear quadrupole resonance (NQR) which detects atoms of nitrogen (an element found in many explosives, including TNT) in different positions in a molecule. For example an atom of nitrogen attached to a carbon atom will have a different resonance to one attached to an oxygen atom. Because the molecular structure of each explosive is different, the resonant frequency will be different.

Professor Itozaki continued: “We have successfully developed a machine that can pick up very low resonant frequencies by using a SQUID (superconducting quantum interference device). The SQUID operates at a temperature of 77 Kelvin (minus 196 degrees centigrade) which we achieve by using liquid nitrogen. This will not hinder the equipment from being used in places such as airports as liquid nitrogen is becoming much easier to deal with and is already routinely used in hospitals and laboratories.”

Helen MacBain | alfa
Further information:
http://www.iop.org
http://www.iop.org/EJ/journal/0953-2048/1

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>