Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integral sees the Galactic centre playing hide and seek

19.01.2007
ESA's gamma ray observatory Integral has caught the centre of our galaxy in a moment of rare quiet. A handful of the most energetic high-energy sources surrounding the black hole at the centre of the Galaxy had all faded into a temporary silence when Integral looked.

This unusual event is allowing astronomers to probe for even fainter objects and may give them a glimpse of matter disappearing into the massive black hole at the centre of our galaxy.

The Galactic centre is one of the most dynamic places in our Galaxy. It is thought to be home to a gigantic black hole, called Sagittarius A* (pronounced 'A star'). Since the beginning of the Integral mission, ESA's gamma ray observatory has allowed astronomers to keep watch on this ever-changing environment.

Integral has discovered many new sources of high-energy radiation near the galactic centre. From February 2005, Integral began to regularly monitor the centre of the Galaxy, and its immediate environment, known as the Galactic bulge.

Erik Kuulkers of ESA's Integral Science Operations Centre, ESAC, Spain, leads the Galactic bulge monitoring programme. Integral now keeps its high-tech eyes on about 80 high-energy sources in the galactic bulge. "Most of these are X-ray binaries," says Kuulkers.

X-ray binaries are made up of two stars in orbit around one another. One star is a relatively normal star; the other is a collapsed star, such as a white dwarf, neutron star or even a black hole. If the stars are close enough together, the strong gravity of the collapsed star can pull off gaseous material from the normal star. As this gas spirals down around the collapsed star, it is heated to over a million degrees centigrade and this causes it to emit high energy X-rays and gamma rays. The amount of gas falling from one star to the other determines the brightness of the X-ray and gamma-ray emission.

According to the Integral observations in April 2006, the high-energy rays from about ten sources closest to the galactic centre all faded temporarily. Kuulkers excludes the possibility that a mysterious external force is acting on all the objects to drive them into quiescence. "All the sources are variable and it was just by accident or sheer luck that they had turned off during that observation," he says with a smile.

The fortuitous dimming allows astronomers to set new limits on how faint these X-ray binaries can become. It also allows a number of new investigations to be undertaken with the data.

"When these normally bright sources are faint, we can look for even fainter sources," says Kuulkers. These could be other X-ray binaries or the high-energy radiation from giant molecular clouds interacting with past supernovae. There is also the possibility of detecting the faint high-energy radiation from the massive black hole in our Galaxy's centre.

Integral's Galactic bulge monitoring programme will continue throughout this year. The data is made available, within a day or two of being collected, to the scientific community via the Internet from a dedicated webpage at the Integral Science Data Centre (IDSC), Geneva, Switzerland. This way, anyone interested in specific sources can watch for interesting changes and trigger follow up observations with other telescopes in good time.

Erik Kuulkers | alfa
Further information:
http://www.esa.int/SPECIALS/Integral/SEMGOVRMTWE_0.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>