Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasar light variability linked to black hole mass

11.01.2007
Quasars are some of the most luminous and distant objects in the universe – and appear to have something in common with ordinary light bulbs, say researchers at the University of Illinois at Urbana-Champaign and at the National Center for Supercomputing Applications.

Quasars were discovered 40 years ago, when astronomers noticed that theseobjects – thought at the time to be stars – were emitting far more radio waves than expected. Researchers found, upon further inspection, that these objects represented a new class of extremely energetic astronomical object.

Astronomers now believe quasars are young galaxies powered by supermassive black holes at their centers. These black holes can be millions or billions of times more massive than our sun.

"With such enormous sources of energy, quasars are among the brightest objects in the universe, some giving off thousands of times more light than our own Milky Way galaxy from a region slightly larger than our solar system," said Brian Wilhite, an astronomer at Illinois and a researcher at NCSA. "Astronomers have also determined that quasars are incredibly variable, with some quasars quadrupling in brightness in the span of just a few hours."

Although rarely that dramatic, variability in light output is seen in nearly all quasars, with average quasars changing in brightness by 10 to 15 percent over the course of one year, Wilhite said. Astronomers have yet to pin down the exact mechanism that drives these changes.

Recently, Wilhite and other researchers at Illinois and NCSA found that this variability is related to both the mass of the black hole at the center of the quasar, and to the efficiency of the quasar at converting gravitational potential energy into light energy.

Using data obtained by the Sloan Digital Sky Survey, the researchers monitored the brightness and estimated the central black hole mass of more than 2,500 quasars, observed over a period of four years. They found that, for a given brightness, quasars with large black hole masses are more variable than those with low black hole masses.

"Quasars with more massive black holes have more gravitational energy that can potentially be extracted, which we would see in the optical as light," said Wilhite, who will present the team's findings at the American Astronomical Society meeting in Seattle on Monday (Jan. 8).

"If two quasars have the same brightness, the one with the larger black hole mass is actually less efficient at converting this gravitational energy into light," Wilhite said. "We have found that these less-efficient quasars have more variable light output. It could be a little like flickering light bulbs – the bulbs that are the most variable are those that are currently the least efficient."

The researchers' findings mark the first time that changes in light output of quasars have been related to their efficiency, and could prove useful in helping astronomers decipher the underlying physics that causes quasars to vary so wildly.

James E. Kloeppel | EurekAlert!
Further information:
http://www.sdss.org
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>