Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasar light variability linked to black hole mass

11.01.2007
Quasars are some of the most luminous and distant objects in the universe – and appear to have something in common with ordinary light bulbs, say researchers at the University of Illinois at Urbana-Champaign and at the National Center for Supercomputing Applications.

Quasars were discovered 40 years ago, when astronomers noticed that theseobjects – thought at the time to be stars – were emitting far more radio waves than expected. Researchers found, upon further inspection, that these objects represented a new class of extremely energetic astronomical object.

Astronomers now believe quasars are young galaxies powered by supermassive black holes at their centers. These black holes can be millions or billions of times more massive than our sun.

"With such enormous sources of energy, quasars are among the brightest objects in the universe, some giving off thousands of times more light than our own Milky Way galaxy from a region slightly larger than our solar system," said Brian Wilhite, an astronomer at Illinois and a researcher at NCSA. "Astronomers have also determined that quasars are incredibly variable, with some quasars quadrupling in brightness in the span of just a few hours."

Although rarely that dramatic, variability in light output is seen in nearly all quasars, with average quasars changing in brightness by 10 to 15 percent over the course of one year, Wilhite said. Astronomers have yet to pin down the exact mechanism that drives these changes.

Recently, Wilhite and other researchers at Illinois and NCSA found that this variability is related to both the mass of the black hole at the center of the quasar, and to the efficiency of the quasar at converting gravitational potential energy into light energy.

Using data obtained by the Sloan Digital Sky Survey, the researchers monitored the brightness and estimated the central black hole mass of more than 2,500 quasars, observed over a period of four years. They found that, for a given brightness, quasars with large black hole masses are more variable than those with low black hole masses.

"Quasars with more massive black holes have more gravitational energy that can potentially be extracted, which we would see in the optical as light," said Wilhite, who will present the team's findings at the American Astronomical Society meeting in Seattle on Monday (Jan. 8).

"If two quasars have the same brightness, the one with the larger black hole mass is actually less efficient at converting this gravitational energy into light," Wilhite said. "We have found that these less-efficient quasars have more variable light output. It could be a little like flickering light bulbs – the bulbs that are the most variable are those that are currently the least efficient."

The researchers' findings mark the first time that changes in light output of quasars have been related to their efficiency, and could prove useful in helping astronomers decipher the underlying physics that causes quasars to vary so wildly.

James E. Kloeppel | EurekAlert!
Further information:
http://www.sdss.org
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>