Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers detect black hole in tiny 'dwarf' galaxy

09.01.2007
Astronomers have found evidence of a supermassive black hole at the heart of a dwarf elliptical galaxy about 54 million light years away from the Milky Way galaxy where Earth resides.

It is only the second time a supermassive black hole has been discerned in a dwarf galaxy, and only the third time that astronomers have observed a double nucleus at the heart of a galaxy, said Victor P. Debattista, a postdoctoral researcher in astronomy at the University of Washington.

The galaxy, called VCC128, lies in the Virgo Cluster and is about 1 percent the size of the Milky Way. All of its stars combined would equal 100 million to 1 billion of our suns, Debattista said.

"It's a very small galaxy, on the outskirts of the cluster," he said. "It is effectively the smallest galaxy in which there is a supermassive black hole."

Black holes lie at the center of many galaxies, and have gravitational fields so powerful that nothing – not even light – can escape. A supermassive black hole is so large that its mass equals anywhere between 100,000 and 10 billion of our suns.

Debattista is the lead author of a poster detailing the discovery being presented today at the American Astronomical Society national meeting in Seattle. Co-authors are Ignacio Ferreras of Kings College in London, Anna Pasquali of the Max-Planck-Institut für Astronomie in Germany, Anil Seth at the Harvard-Smithsonian Center for Astrophysics in Boston, Sven De Rijcke of the Universiteit Gent in Belgium, and Lorenzo Morelli of Pontificia Universidad Católica in Chile. The work was funded by a grant from the National Science Foundation, a Brooks Prize Fellowship at the UW and the Fund for Scientific Research in Belgium.

The scientists were sifting through archived data from the Hubble Space Telescope when they found the supermassive black hole. They were studying the nuclei of dwarf galaxies, which are thought to develop from globular clusters, tightly packed spherical collections of stars that orbit a galaxy. As they examined the properties of the nuclei, they discovered one galaxy, VCC128, that had a double nucleus. Ultimately they determined the double nucleus is made up of two points of light from stars collected at opposite edges of a ring surrounding a black hole. Using the 3.5-meter telescope at the Apache Point Observatory in New Mexico, they measured properties of light from the nucleus and found that the nucleus is a ring of stars at least 1 billion years old, meaning the system probably is very stable.

"The fact that we found a black hole is impressive because it's been thought that a galaxy this small should not be able to host a black hole," Debattista said. "It had been speculated that dwarf galaxies like this could not make black holes."

The researchers believe the black hole has a mass at least equal to the ring of stars surrounding it, ranging from 1 million to 50 million times the mass of our sun.

"The question remains whether other dwarf galaxies with bright nuclei are indeed similar systems. We may not see more of these stellar rings because they are so small," said Ferreras.

The finding helps in understanding the processes occurring in low-mass dwarf galaxies as they travel through space and merge with other dwarfs to form larger galaxies. As that happens, their black holes also become more massive.

"The dwarf galaxies that escaped from this merging process offer us the opportunity to study the properties of the building blocks of today's massive galaxies and the supermassive black holes they host," said De Rijcke.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>