Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray evidence supports possible new class of supernova

08.01.2007
Evidence for a significant new class of supernova has been found with the European Space Agency's XMM-Newton and NASA's Chandra X-ray Observatory. These results strengthen the case for a population of stars that evolve rapidly and are destroyed by thermonuclear explosions. Such ‘prompt’ supernovas could be valuable tools for probing the early history of the cosmos.

A team of astronomers uncovered a puzzling situation when they examined X-ray data from DEM L238 and DEM L249, the remnants of two supernovas in a nearby galaxy. On the one hand, the unusually high concentration of iron atoms implied that the remnants are the products of thermonuclear explosions of white dwarf stars, a well-known type of supernova known as ‘Type Ia’. On the other hand, the hot gas in the remnants was much denser and brighter in X-rays than typical Type Ia remnants.

A white dwarf, the dense final stage in the evolution of a sun-like star, is a very stable object and will not explode on its own. However, if a white dwarf has a close companion star it can grow beyond a critical mass by pulling gas off the companion and explode.

Computer simulations of Type Ia supernova remnants showed that the most likely explanation for the X-ray data is that the white dwarfs exploded into very dense environments. This suggests that the stars which evolved into these white dwarfs were more massive than usual, because heavier stars are known to expel more gas into their surroundings.

"We know that the more massive a star is, the shorter its lifetime," said Kazimierz Borkowski of North Carolina State University, Raleigh, USA. "If such a star could also begin to pull matter from its companion at an early stage, then this star would have a much shorter fuse and explode in only about 100 million years - much less than other Type Ia supernovas."

Other teams have independently found evidence for prompt Type Ia explosions using optical observations, but at much greater distances where the environment of the stellar explosion cannot be probed. The X-ray data of DEM L238 and DEM L249 represent nearby examples of prompt Type Ia supernovas.

"We still need to know more about the details of these explosions since they are such an important tool for studying cosmology," said Stephen Reynolds also of North Carolina State University. "So, it's exciting to discover we have some really nearby examples, astronomically speaking, of this different class of explosion."

The luminosity of Type Ia explosions is thought to be very consistent from star to star, and astronomers have used observations of Type Ia supernovas in optical light as cosmic mile markers to study the accelerating expansion of the cosmos caused by dark energy.

If Type Ia supernovas can occur so quickly, they can exist much earlier in the Universe's history than generally believed, allowing them to probe the expansion at these epochs. Another possibility is that the prompt Type Ia’s may also differ in other properties. If so, the assumption that Type Ia’s are standard candles may be compromised, complicating attempts to study dark energy.

"We weren't around to see these stars before they exploded," said Sean Hendrick of Millersville University, Pennsylvania,USA, "but these X-ray clues tell us that something unusual happened in the case of these two."

After finding this evidence for prompt Type Ia explosions in the Large Magellanic Cloud, a nearby galaxy, the researchers are looking at other supernova remnants within the Milky Way to see if they might be examples of this potential new class. For example, the famous supernova observed by Johannes Kepler in 1604 might have been a prompt Type Ia supernova.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEM26FSVYVE_index_0.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>