Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray evidence supports possible new class of supernova

08.01.2007
Evidence for a significant new class of supernova has been found with the European Space Agency's XMM-Newton and NASA's Chandra X-ray Observatory. These results strengthen the case for a population of stars that evolve rapidly and are destroyed by thermonuclear explosions. Such ‘prompt’ supernovas could be valuable tools for probing the early history of the cosmos.

A team of astronomers uncovered a puzzling situation when they examined X-ray data from DEM L238 and DEM L249, the remnants of two supernovas in a nearby galaxy. On the one hand, the unusually high concentration of iron atoms implied that the remnants are the products of thermonuclear explosions of white dwarf stars, a well-known type of supernova known as ‘Type Ia’. On the other hand, the hot gas in the remnants was much denser and brighter in X-rays than typical Type Ia remnants.

A white dwarf, the dense final stage in the evolution of a sun-like star, is a very stable object and will not explode on its own. However, if a white dwarf has a close companion star it can grow beyond a critical mass by pulling gas off the companion and explode.

Computer simulations of Type Ia supernova remnants showed that the most likely explanation for the X-ray data is that the white dwarfs exploded into very dense environments. This suggests that the stars which evolved into these white dwarfs were more massive than usual, because heavier stars are known to expel more gas into their surroundings.

"We know that the more massive a star is, the shorter its lifetime," said Kazimierz Borkowski of North Carolina State University, Raleigh, USA. "If such a star could also begin to pull matter from its companion at an early stage, then this star would have a much shorter fuse and explode in only about 100 million years - much less than other Type Ia supernovas."

Other teams have independently found evidence for prompt Type Ia explosions using optical observations, but at much greater distances where the environment of the stellar explosion cannot be probed. The X-ray data of DEM L238 and DEM L249 represent nearby examples of prompt Type Ia supernovas.

"We still need to know more about the details of these explosions since they are such an important tool for studying cosmology," said Stephen Reynolds also of North Carolina State University. "So, it's exciting to discover we have some really nearby examples, astronomically speaking, of this different class of explosion."

The luminosity of Type Ia explosions is thought to be very consistent from star to star, and astronomers have used observations of Type Ia supernovas in optical light as cosmic mile markers to study the accelerating expansion of the cosmos caused by dark energy.

If Type Ia supernovas can occur so quickly, they can exist much earlier in the Universe's history than generally believed, allowing them to probe the expansion at these epochs. Another possibility is that the prompt Type Ia’s may also differ in other properties. If so, the assumption that Type Ia’s are standard candles may be compromised, complicating attempts to study dark energy.

"We weren't around to see these stars before they exploded," said Sean Hendrick of Millersville University, Pennsylvania,USA, "but these X-ray clues tell us that something unusual happened in the case of these two."

After finding this evidence for prompt Type Ia explosions in the Large Magellanic Cloud, a nearby galaxy, the researchers are looking at other supernova remnants within the Milky Way to see if they might be examples of this potential new class. For example, the famous supernova observed by Johannes Kepler in 1604 might have been a prompt Type Ia supernova.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEM26FSVYVE_index_0.html

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>