Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With computers, astronomers show predicted present day distribution of elusive first stars

13.12.2006
With the help of enormous computer simulations, astronomers have now shown that the first generation of stars –– which have never been observed by scientists –– should be distributed evenly throughout our galaxy, deepening the long-standing mystery about these missing stellar ancestors. The results are published in this week's issue of the Astrophysical Journal.

The problem is that despite years of looking, no one has ever found any of these stars. "Many astronomers thought this was because the stars without heavy elements were hidden from us," said Evan Scannapieco, first author and a postdoctoral fellow at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara. "Because our galaxy formed from the inside out, the idea was that these very old stars would all be near the center. But the center of Milky Way is extremely crowded with dust and newer stars, making it very hard to detect individual old stars in this environment."

This earliest generation of stars should look very different from later-forming stars like the Sun; yet so far, no one has detected a survivor from this primordial population. One of the long-standing explanations for this discrepancy was that these stars might all be contained in regions near the center of the Milky Way, where they are very hard to observe. The results of the new study make that explanation unlikely.

Oxygen, carbon, and most of the elements we encounter every day on Earth were made in stars, rather than during the Big Bang. "But these heavy elements are made in the centers of stars and remain buried under the gas at the surface until the stars die and explode, so what you see when you look at a star are the elements that were present when it was born," said Brad K. Gibson, co-author and chair of the Department of Theoretical Astrophysics at the University of Central Lancashire in Britain. "This means that the stars still living from this first generation should continue to show no heavy elements."

Carrying out a detailed simulation of the formation of the Milky Way, the research group constructed not only the history of where stars formed over time, but the chemical composition of the gas out of which these stars formed. "We found that while the very oldest stars all end up near the center of the Milky Way, it takes a long time for heavy elements to enrich the gas that is further out," said co-author Daisuke Kawata, a scientist with the Carnegie Observatories in Pasadena, California. "This means that while the oldest stars all end up near the center of the galaxy, plenty of stars that contain only primordial elements are formed at later times throughout the galaxy. These primordial stars should be everywhere."

Because the stars forming in the Milky Way suburbs are easily detectable with present day telescopes, there must be some other reason that the remnants of this primordial generation didn't survive. "It could be that they were all high-mass stars, which would not have lived long enough to still be around, or there could be another twist to the story that we haven't yet figured out," said co-investigator Chris Brook, a scientist with the University of Washington. "Whatever the answer, it's clear that studies of the outskirts of our galaxy will have lots more to tell us about this remarkable, missing generation."

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>