Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With computers, astronomers show predicted present day distribution of elusive first stars

13.12.2006
With the help of enormous computer simulations, astronomers have now shown that the first generation of stars –– which have never been observed by scientists –– should be distributed evenly throughout our galaxy, deepening the long-standing mystery about these missing stellar ancestors. The results are published in this week's issue of the Astrophysical Journal.

The problem is that despite years of looking, no one has ever found any of these stars. "Many astronomers thought this was because the stars without heavy elements were hidden from us," said Evan Scannapieco, first author and a postdoctoral fellow at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara. "Because our galaxy formed from the inside out, the idea was that these very old stars would all be near the center. But the center of Milky Way is extremely crowded with dust and newer stars, making it very hard to detect individual old stars in this environment."

This earliest generation of stars should look very different from later-forming stars like the Sun; yet so far, no one has detected a survivor from this primordial population. One of the long-standing explanations for this discrepancy was that these stars might all be contained in regions near the center of the Milky Way, where they are very hard to observe. The results of the new study make that explanation unlikely.

Oxygen, carbon, and most of the elements we encounter every day on Earth were made in stars, rather than during the Big Bang. "But these heavy elements are made in the centers of stars and remain buried under the gas at the surface until the stars die and explode, so what you see when you look at a star are the elements that were present when it was born," said Brad K. Gibson, co-author and chair of the Department of Theoretical Astrophysics at the University of Central Lancashire in Britain. "This means that the stars still living from this first generation should continue to show no heavy elements."

Carrying out a detailed simulation of the formation of the Milky Way, the research group constructed not only the history of where stars formed over time, but the chemical composition of the gas out of which these stars formed. "We found that while the very oldest stars all end up near the center of the Milky Way, it takes a long time for heavy elements to enrich the gas that is further out," said co-author Daisuke Kawata, a scientist with the Carnegie Observatories in Pasadena, California. "This means that while the oldest stars all end up near the center of the galaxy, plenty of stars that contain only primordial elements are formed at later times throughout the galaxy. These primordial stars should be everywhere."

Because the stars forming in the Milky Way suburbs are easily detectable with present day telescopes, there must be some other reason that the remnants of this primordial generation didn't survive. "It could be that they were all high-mass stars, which would not have lived long enough to still be around, or there could be another twist to the story that we haven't yet figured out," said co-investigator Chris Brook, a scientist with the University of Washington. "Whatever the answer, it's clear that studies of the outskirts of our galaxy will have lots more to tell us about this remarkable, missing generation."

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>