Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With computers, astronomers show predicted present day distribution of elusive first stars

13.12.2006
With the help of enormous computer simulations, astronomers have now shown that the first generation of stars –– which have never been observed by scientists –– should be distributed evenly throughout our galaxy, deepening the long-standing mystery about these missing stellar ancestors. The results are published in this week's issue of the Astrophysical Journal.

The problem is that despite years of looking, no one has ever found any of these stars. "Many astronomers thought this was because the stars without heavy elements were hidden from us," said Evan Scannapieco, first author and a postdoctoral fellow at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara. "Because our galaxy formed from the inside out, the idea was that these very old stars would all be near the center. But the center of Milky Way is extremely crowded with dust and newer stars, making it very hard to detect individual old stars in this environment."

This earliest generation of stars should look very different from later-forming stars like the Sun; yet so far, no one has detected a survivor from this primordial population. One of the long-standing explanations for this discrepancy was that these stars might all be contained in regions near the center of the Milky Way, where they are very hard to observe. The results of the new study make that explanation unlikely.

Oxygen, carbon, and most of the elements we encounter every day on Earth were made in stars, rather than during the Big Bang. "But these heavy elements are made in the centers of stars and remain buried under the gas at the surface until the stars die and explode, so what you see when you look at a star are the elements that were present when it was born," said Brad K. Gibson, co-author and chair of the Department of Theoretical Astrophysics at the University of Central Lancashire in Britain. "This means that the stars still living from this first generation should continue to show no heavy elements."

Carrying out a detailed simulation of the formation of the Milky Way, the research group constructed not only the history of where stars formed over time, but the chemical composition of the gas out of which these stars formed. "We found that while the very oldest stars all end up near the center of the Milky Way, it takes a long time for heavy elements to enrich the gas that is further out," said co-author Daisuke Kawata, a scientist with the Carnegie Observatories in Pasadena, California. "This means that while the oldest stars all end up near the center of the galaxy, plenty of stars that contain only primordial elements are formed at later times throughout the galaxy. These primordial stars should be everywhere."

Because the stars forming in the Milky Way suburbs are easily detectable with present day telescopes, there must be some other reason that the remnants of this primordial generation didn't survive. "It could be that they were all high-mass stars, which would not have lived long enough to still be around, or there could be another twist to the story that we haven't yet figured out," said co-investigator Chris Brook, a scientist with the University of Washington. "Whatever the answer, it's clear that studies of the outskirts of our galaxy will have lots more to tell us about this remarkable, missing generation."

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>