Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show how catalysts grow

11.12.2006
Porous materials are involved in many chemical reactions that affect our daily lives. Despite their wide use, there is little knowledge about them. Scientists from the Netherlands, United Kingdom and the ESRF have just shed new light on how these materials organise themselves when they are created. Their experiments at the ESRF combined three different techniques in real time, with the aim of viewing a full picture of the process. This new information could help improve their synthesis in the future.

“Zeolites” might be an unknown word to many non-scientists, but its meaning is everywhere around us: when we wash our clothes, drive a car or walk in the streets. They are used in many processes, such as the production of petrol, detergents or concrete. They are inorganic porous material with a highly regular structure of channels and pores that allow some molecules to pass through, and cause others to be either excluded, or broken down.

In nature, they are made of volcanic rock, but industry has been synthesizing them for many years. In industry they are formed from a gel and only become (catalysts) or porous solids when templates are used to direct the formation of a structure. If organic bases (chemical compounds which can neutralize an acid) are added to the reaction, new structures can be formed, but the way this happens is not well understood. A deeper knowledge of this process would enable better catalysts to be made.

In order to get new insight on this process, the team of researchers from The Netherlands, United Kingdom and the ESRF monitored the synthesis of zeolites with organic bases in real time. They added zinc to the original gel because it promotes the formation of zeolites at low temperatures. They realized that this element influenced the template of the zeolite and the crystallization process . The results suggest that molecular organization of the zeolites occurs before crystallization, therefore, before the formation of zeolite crystals.

The time-resolved experiments at the ESRF took place on a specially developed set up, and combined three different techniques, namely X-ray absorption spectroscopy and small and wide angle diffraction. They complemented these with additional data using Raman spectroscopy. “We could look at each aspect of the crystallization process for the first time ever”, explains Andrew Beale, one of the researchers, from Utrecht University (The Netherlands).

The new results may not have an immediate repercussion among industrial zeolite manufacturers, but they provide a new vision on these materials for the academic community. The outcome of this research was published in two papers in the Journal of American Chemical Society and has been recently reported in Nature. “These results are highly relevant to the debate on the mechanism of zeolite formation”, asserts Rutger A. Van Santen, a scientist from the Schuit Institute of Catalysis (The Netherlands), in the Nature article.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/pressreleases/catalyst/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>