Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asymmetric Ashes

01.12.2006
Astronomers Study Shape of Stellar Candles

Astronomers are reporting remarkable new findings that shed light on a decade-long debate about one kind of supernovae, the explosions that mark a star's final demise: does the star die in a slow burn or with a fast bang? From their observations, the scientists find that the matter ejected by the explosion shows significant peripheral asymmetry but a nearly spherical interior, most likely implying that the explosion finally propagates at supersonic speed.

These results are reported today in Science Express, the online version of the research journal Science, by Lifan Wang, Texas A&M University (USA), and colleagues Dietrich Baade and Ferdinando Patat from ESO.

"Our results strongly suggest a two-stage explosion process in this type of supernova," comments Wang. "This is an important finding with potential implications in cosmology."

Using observations of 17 supernovae made over more than 10 years with ESO's Very Large Telescope and the McDonald Observatory's Otto Struve Telescope, astronomers inferred the shape and structure of the debris cloud thrown out from Type Ia supernovae. Such supernovae are thought to be the result of the explosion of a small and dense star - a white dwarf - inside a binary system. As its companion continuously spills matter onto the white dwarf, the white dwarf reaches a critical mass, leading to a fatal instability and the supernova. But what sparks the initial explosion, and how the blast travels through the star have long been thorny issues.

The supernovae Wang and his colleagues observed occurred in distant galaxies, and because of the vast cosmic distances could not be studied in detail using conventional imaging techniques, including interferometry. Instead, the team determined the shape of the exploding cocoons by recording the polarisation of the light from the dying stars.

Polarimetry relies on the fact that light is composed of electromagnetic waves that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light.

"This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," says Dietrich Baade.

"Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," he adds. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth."

The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy, it is.

"This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed."

"Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang.

Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

Henri Boffin | alfa
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>