Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s largest superconducting magnet switches on

22.11.2006
The largest superconducting magnet ever built has successfully been powered up to its nominal operating conditions at the first attempt. Called the Barrel Toroid because of its shape, this magnet provides a powerful magnetic field for ATLAS, one of the major particle detectors being prepared to take data at CERN ’s Large Hadron Collider (LHC), the new particle accelerator scheduled to turn on in November 2007.

The ATLAS Barrel Toroid consists of eight superconducting coils, each in the shape of a round-cornered rectangle, 5m wide, 25m long and weighing 100 tonnes, all aligned to millimetre precision. It will work together with other magnets in ATLAS to bend the paths of charged particles produced in collisions at the LHC, enabling important properties to be measured. Unlike most particle detectors, the ATLAS detector does not need large quantities of metal to contain the field because the field is contained within a doughnut shape defined by the coils. This increases the precision of the measurements it can make.

At 46m long, 25m wide and 25m high, ATLAS is the largest volume detector ever constructed for particle physics. Among the questions ATLAS will focus on are why particles have mass, what the unknown 96% of the Universe is made of, and why Nature prefers matter to antimatter. Some 1800 scientists from 165 universities and laboratories representing 35 countries are building the ATLAS detector and preparing to take data next year.

The ATLAS Barrel Toroid was first cooled down over a six-week period in July-August to reach –269oC . It was then powered up step-by-step to higher and higher currents, reaching 21 thousand amps for the first time during the night of 9 November. This is 500 amps above the current needed to produce the nominal magnetic field. Afterwards, the current was switched off and the stored magnetic energy of 1.1 GigaJoules, the equivalent of about 10 000 cars travelling at 70km/h, has now been safely dissipated, raising the cold mass of the magnet to –218oC.

“We can now say that the ATLAS Barrel Toroid is ready for physics,” said Herman ten Kate, ATLAS magnet system project leader.

The ATLAS Barrel Toroid is financed by the ATLAS Collaboration and has been built through close collaboration between the French CEA-DAPNIA laboratory (originator of the magnet’s design) , Italy’s INFN-LASA laboratory and CERN. Components have been contributed in-kind by national funding agencies from industries in France (CEA), Italy, Germany (BMBF), Spain, Sweden, Switzerland, Russia, and the Joint Institute for Nuclear Research (JINR), an international organization based near Moscow. The final integration and test of the coils at CERN, as well as assembly of the toroid in the ATLAS underground cavern, was done with JINR providing most of the manpower and heavy tooling.

James Gillies | alfa
Further information:
http://www.cern.ch
http://press.web.cern.ch/press/PressReleases/Releases2006/PR17.06E.html

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>