Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free-electron laser shines at over 14 kilowatts in the infrared

10.11.2006
The most powerful tunable laser in the world just shattered another power record: the Free-Electron Laser (FEL), supported by the Office of Naval Research and located at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), produced a 14.2 kilowatt (kW) beam of laser light at an infrared wavelength of 1.61 microns on October 30.

"This wavelength is of interest to the Navy for transmission of light through the maritime atmosphere and for material science applications," said Fred Dylla, Jefferson Lab's Chief Technology Officer and Associate Director of the Free-Electron Laser Division.

The FEL is supported by the Office of Naval Research, the Naval Sea Systems Command, the Air Force Research Laboratory, and the Joint Technology Office, as well as by the Commonwealth of Virginia. The laser's new capabilities will enhance a wide range of applications, such as shipboard antimissile defense and other defense applications as well as manufacturing technologies and the support of scientific studies in chemistry, physics, biology and medicine.

This is another record for the powerful laser, which was also the first to achieve 10 kW in the infrared at 6 microns in July 2004. "In this case, the smaller the wavelength in the infrared, the more difficult it was to reach at these tremendously high powers," Dylla said. "Reaching 14 kilowatts at 1.61 microns is a truly remarkable achievement, and we couldn't have done it without the hard work and dedication of the FEL staff and our colleagues at Jefferson Lab. The team created groundbreaking designs that resolved technical challenges never before seen, since these power levels are unprecedented."

"This milestone supports the Navy's vision for the ultimate development of a very high power FEL that will serve as part of a ship-based weapon system and provide precise, speed-of-light energy projection at sea," added ONR program manager Lewis DeSandre. "The Navy and Department of Energy research communities continue to work on the steady development of FEL technology. The goal is to reach higher power levels that will provide persuasive evidence and support the eventual realization of FEL as a promising candidate for meeting several of the Navy's broad mission requirements and defeating 21st century threats."

"This achievement culminates an incredible effort by this dedicated team and my thanks and congratulations go out to the many physicists, engineers, technicians, and support staff members who have made this milestone possible," commented Jefferson Lab Director and JSA, LLC, President, Christoph Leemann.

The FEL program began as the One-Kilowatt Demonstration FEL, which broke power records and made its mark as the world's brightest high average power laser. It delivered 2.1 kW of infrared light--more than twice the level it was initially designed to achieve--before it was taken offline in November 2001 for an upgrade to 10 kW.

Built with Jefferson Lab's expertise in superconducting radiofrequency (SRF) technology, the FEL is the world's most powerful tunable laser. The FEL provides intense beams of laser light that can be tuned to a precise wavelength range in the infrared at higher-average powers than beams from conventional lasers.

Colin Babb | EurekAlert!
Further information:
http://www.onr.navy.mil/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>