Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T-ray breakthrough could make detecting disease far easier

02.11.2006
A breakthrough in the harnessing of ‘T-rays’ - electromagnetic terahertz waves - which could dramatically improve the detecting and sensing of objects as varied as biological cell abnormalities and explosives has been announced.

Researchers at the University of Bath, UK, and in Spain have said they have found a way to control the flow of terahertz radiation down a metal wire. Their findings are set out in a letter published in the current journal Physical Review Letters.

Terahertz radiation, whose frequency is around one thousand billion cycles a second, bridges the gap between the microwave and infrared parts of the electromagnetic spectrum.

Materials interact with radiation at T-ray frequencies in different ways than with radiation in other parts of the spectrum, making T-rays potentially important in detecting and analysing chemicals by analysing how they absorb T-rays fired at them.

This would allow quality control of prescribed drugs and detection of explosives to be carried out more easily, as many complex molecules have distinctive signatures in this part of the electromagnetic spectrum.

T-ray applications are presently limited by the relatively poor ability to focus the rays, which is achieved using the conventional means of lenses and mirrors to focus the radiation. This limits the spot size of focused T-rays to a substantial fraction of a millimetre and this has made studies of small objects such as biological cells with high resolution are virtually impossible.

But in their work the researchers found that although ordinary metal wire would not guide T-rays very well, if a series of tiny grooves was cut into the wire, it would do so much more effectively. If such a corrugated metal wire is then tapered to a point it becomes possible to very efficiently transport radiation to a point as small as a few millionths of a metre across.

This might, for example, lead to breakthroughs in examining very small objects such as the interior of biological cells where it might be possible to detect diseases or abnormalities. T-rays could also be directed to the interior of objects which could be useful in applications like endoscopic probing for cancerous cells or explosive detection.

“This is a significant development that would allow unprecedented accuracy in studying tiny objects and sensing chemicals using T-rays" said Dr Stefan Maier, of the University of Bath’s Department of Physics, who leads the research.

“Metal wire ordinarily has a limited ability to allow T-rays to flow along it, but our idea was to overcome this by corrugating its surface with a series of grooves, in effect creating an artificial material or ‘metamaterial’ as far as the T-rays are concerned.”

“In this way, the T-rays can be focused to the tip of the wire and guided into confined spaces or used to detect small objects, with important implications for disease detection or finding explosive that are hidden.”

Dr Maier is working with Dr Steve Andrews at Bath, and with Professor Francisco García-Vidal, of the Universidad Autónoma de Madrid, and Luis Martín-Moreno, of the Universidad de Zaragoza-CSIC.

The project, which is funded by the Royal Society in the UK, the EU and the US Airforce, is one year into its three-year term. The researchers hope to produce a working model within a year.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/t-rays021106.html

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>