Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sun Satellites, With UNH Sensors Aboard, Poised to Launch

25.10.2006
NASA's Solar TErrestrial RElations Observatory (STEREO) mission will dramatically improve understanding of the powerful solar eruptions that can send more than a billion tons of the sun's outer atmosphere hurtling into space. The twin STEREO spacecraft each carry an instrument designed and built by scientists at the University of New Hampshire in collaboration with several other institutions.

STEREO is scheduled to launch from Cape Canaveral Air Force Station, Fla. on the evening of Wednesday, October 25 aboard a Delta II rocket. The launch window extends from 8:38 - 8:53 p.m. EDT.

The mission is comprised of two nearly identical spacecraft the size of golf carts. Their observations will enable scientists to construct the first-ever three-dimensional views of the sun. These images will show the sun's stormy environment and its effect on the inner solar system. The data are vital for understanding how the sun creates space weather.

During the two-year mission, the two spacecraft will explore the origin, evolution and interplanetary consequences of coronal mass ejections, some of the most violent explosions in our solar system. When directed at Earth, these billion-ton eruptions can produce spectacular aurora and disrupt satellites, radio communications and power systems. Energetic particles associated with these solar eruptions permeate the entire solar system and may be hazardous to spacecraft and astronauts.

The UNH component of the mission is called the PLAsma and Supra-Thermal Ion Composition (PLASTIC) investigation and will provide plasma characteristics of protons, alpha particles and heavy ions. Solar wind protons and alpha particles constitute most of the mass in the solar wind and are therefore the primary components exerting kinetic pressure on the Earth’s magnetosphere – one of the drivers for space weather.

PLASTIC is the primary sensor on STEREO for studying coronal-solar wind and solar wind-heliospheric processes. The PLASTIC investigation is an international collaborative effort by the UNH (lead institution), the University of Bern, the University of Kiel, the Max Planck Institute for Extraterrestrial Physics, and NASA Goddard Space Flight Center.

UNH’s lead scientist for PLASTIC is associate research professor Antionette “Toni” Galvin. “The NASA STEREO mission, for the first time, will routinely take images of the extended solar atmosphere with remote imaging instruments on one STEREO spacecraft, while taking direct samples of the same solar wind parcel as it flows by the other STEREO spacecraft,” Galvin said. “STEREO is opening a new era in our understanding of the sun and its influence on the Earth.”

The solar wind is a continuous stream of charged particles that come from the sun and carry its extended atmosphere and magnetic field. Traveling at more than a million miles per hour, the solar wind fills interplanetary space and creates space weather. The composition of the solar wind provides a means of identifying and characterizing the source regions on the sun that are emitting these particles – a process that is essential in the forecasting of certain types of space weather.

"In terms of space-weather forecasting, we're where weather forecasters were in the 1950s," said Michael Kaiser, STEREO project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "They didn't see hurricanes until the rain clouds were right above them. In our case, we can see storms leaving the sun, but we have to make guesses and use models to figure out if and when they will impact Earth."

To obtain their unique stereo view of the sun, the two observatories must be placed in different orbits, where they are offset from each other and Earth. Spacecraft "A" will be in an orbit moving ahead of Earth, and "B" will lag behind, as the planet orbits the sun.

Just as the slight offset between eyes provides depth perception, this placement will allow the STEREO observatories to obtain 3-D images of the sun. The arrangement also allows the spacecraft to take local particle and magnetic field measurements of the solar wind as it flows by the spacecraft.

STEREO is the first NASA mission to use separate lunar swingbys to place two observatories into vastly different orbits around the sun. The observatories will fly in “phasing” orbits from a point close to Earth to one that extends just beyond the moon.

Approximately two months after launch, mission operations personnel at the Johns Hopkins University Applied Physics Laboratory, Laurel, Md., will use a close flyby of the moon to modify the orbits. The moon's gravity will be used to direct one observatory to its position trailing Earth. Approximately one month later, the second observatory will be redirected after another lunar swingby to its position ahead of Earth. These maneuvers will enable the spacecraft to take permanent orbits around the sun.

Each STEREO spacecraft has four scientific investigations, one of which is PLASTIC. The observatories have imaging telescopes and equipment to measure solar wind particles and to perform radio astronomy.

"STEREO is charting new territory for science research and the building of spacecraft. The simultaneous assembly, integration and launch of nearly identical observatories have been an extraordinary challenge," said Nick Chrissotimos, STEREO project manager at Goddard.

The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results.

“We look forward to a wonderfully productive STEREO mission in which students at UNH will have an opportunity to work at the forefront of solar research,” said Roy Torbert, director of the UNH Space Science Center.

For more information about STEREO and a gallery of images, visit: http://www.nasa.gov/stereo.

Editors and reporters: Toni Galvin, principal investigator for PLASTIC, and project research scientist Mark Popecki can be reached directly via the following means: Galvin: cell phone – (603)-661-9212; E-mail - toni.galvin@unh.edu; office – (603) 862-3511 or -0022 (secretary); Popecki: cell phone – (603) 767- 4464; E-mail –mark.popecki@unh.edu; office – (603) 862-2957.

David Sims | EurekAlert!
Further information:
http://www.nasa.gov/stereo
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>