Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New experiment to investigate cosmic connection to clouds

20.10.2006
A novel experiment, known as CLOUD (Cosmics Leaving OUtdoor Droplets), begins taking its first data today (19th October 2006) with a prototype detector in a particle beam at CERN, the world’s largest laboratory for particle physics.

The goal of the experiment is to investigate the possible influence of galactic cosmic rays on Earth's clouds. This represents the first time a high energy physics accelerator has been used for atmospheric and climate science.

The CLOUD experiment is designed to explore the microphysical interactions between cosmic rays and clouds. Cosmic rays are charged particles that bombard the Earth's atmosphere from outer space. Studies suggest that cosmic rays may influence the amount of cloud cover through the formation of new aerosols (tiny particles suspended in the air that seed cloud droplets). Clouds exert a strong influence on the Earth's energy balance, and changes of only a few per cent have an important effect on the climate. The CLOUD prototype experiment aims to investigate the effect of cosmic rays on the formation of new aerosols.

Understanding the microphysics in controlled laboratory conditions is a key to unravelling the connection between cosmic rays and clouds. CLOUD will reproduce these interactions for the first time by sending a beam of particles – the “cosmic rays” - from CERN’s Proton Synchrotron into a reaction chamber. The effect of the beam on aerosol production will be recorded and analysed.

The collaboration comprises an interdisciplinary team from 18 institutes and 9 countries in Europe, the United States and Russia. UK scientists from the University of Leeds, University of Reading and CCLRC Rutherford Appleton Laboratory are members of the CLOUD collaboration. It brings together atmospheric physicists, solar physicists, and cosmic ray and particle physicists to address a key question in the understanding of clouds and climate change.

"The experiment has attracted the leading aerosol, cloud and solar-terrestrial physicists from Europe; Austria, Denmark, Finland, Germany, Switzerland and the United Kingdom are especially strong in this area" says the CLOUD spokesperson, Jasper Kirkby of CERN.

"CERN is a unique environment for this experiment. As well as our accelerators, we bring the specialist technologies, experimental techniques and experience in the integration of large, complex detectors that are required for CLOUD." An example in the present CLOUD prototype is the gas system, designed by CERN engineers, which produces ultra-pure air from the evaporation of liquid oxygen and liquid nitrogen. "It's probably the cleanest air anywhere in the world", says Kirkby.

Professor Bob Bingham, a UK CLOUD collaborator from CCLRC Rutherford Appleton Laboratory, said, “By studying the micro-physical processes at work when cosmic rays hit the atmosphere we can begin to understand more fully the connection between cosmic rays and cloud cover.”

Dr Giles Harrison, a UK CLOUD collaborator from the University of Reading, adds, “We know that charged particles and cluster ions occur throughout the lower atmosphere but the physical consequences of their charge for cloud and aerosol processes is an under-explored area of atmospheric science. CLOUD should provide unique new measurements in atmospheric aerosol science and atmospheric electricity.”

The first results from the CLOUD prototype are expected by the summer of 2007. The full CLOUD experiment includes an advanced cloud chamber and reactor chamber equipped with a wide range of external instrumentation to monitor and analyse their contents. The temperature and pressure conditions anywhere in the atmosphere can be re-created within the chambers, and all experimental conditions can be controlled and measured - including the "cosmic ray" intensity and the contents of the chambers. The first beam data with the full CLOUD experiment is expected in 2010.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>