Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New experiment to investigate cosmic connection to clouds

20.10.2006
A novel experiment, known as CLOUD (Cosmics Leaving OUtdoor Droplets), begins taking its first data today (19th October 2006) with a prototype detector in a particle beam at CERN, the world’s largest laboratory for particle physics.

The goal of the experiment is to investigate the possible influence of galactic cosmic rays on Earth's clouds. This represents the first time a high energy physics accelerator has been used for atmospheric and climate science.

The CLOUD experiment is designed to explore the microphysical interactions between cosmic rays and clouds. Cosmic rays are charged particles that bombard the Earth's atmosphere from outer space. Studies suggest that cosmic rays may influence the amount of cloud cover through the formation of new aerosols (tiny particles suspended in the air that seed cloud droplets). Clouds exert a strong influence on the Earth's energy balance, and changes of only a few per cent have an important effect on the climate. The CLOUD prototype experiment aims to investigate the effect of cosmic rays on the formation of new aerosols.

Understanding the microphysics in controlled laboratory conditions is a key to unravelling the connection between cosmic rays and clouds. CLOUD will reproduce these interactions for the first time by sending a beam of particles – the “cosmic rays” - from CERN’s Proton Synchrotron into a reaction chamber. The effect of the beam on aerosol production will be recorded and analysed.

The collaboration comprises an interdisciplinary team from 18 institutes and 9 countries in Europe, the United States and Russia. UK scientists from the University of Leeds, University of Reading and CCLRC Rutherford Appleton Laboratory are members of the CLOUD collaboration. It brings together atmospheric physicists, solar physicists, and cosmic ray and particle physicists to address a key question in the understanding of clouds and climate change.

"The experiment has attracted the leading aerosol, cloud and solar-terrestrial physicists from Europe; Austria, Denmark, Finland, Germany, Switzerland and the United Kingdom are especially strong in this area" says the CLOUD spokesperson, Jasper Kirkby of CERN.

"CERN is a unique environment for this experiment. As well as our accelerators, we bring the specialist technologies, experimental techniques and experience in the integration of large, complex detectors that are required for CLOUD." An example in the present CLOUD prototype is the gas system, designed by CERN engineers, which produces ultra-pure air from the evaporation of liquid oxygen and liquid nitrogen. "It's probably the cleanest air anywhere in the world", says Kirkby.

Professor Bob Bingham, a UK CLOUD collaborator from CCLRC Rutherford Appleton Laboratory, said, “By studying the micro-physical processes at work when cosmic rays hit the atmosphere we can begin to understand more fully the connection between cosmic rays and cloud cover.”

Dr Giles Harrison, a UK CLOUD collaborator from the University of Reading, adds, “We know that charged particles and cluster ions occur throughout the lower atmosphere but the physical consequences of their charge for cloud and aerosol processes is an under-explored area of atmospheric science. CLOUD should provide unique new measurements in atmospheric aerosol science and atmospheric electricity.”

The first results from the CLOUD prototype are expected by the summer of 2007. The full CLOUD experiment includes an advanced cloud chamber and reactor chamber equipped with a wide range of external instrumentation to monitor and analyse their contents. The temperature and pressure conditions anywhere in the atmosphere can be re-created within the chambers, and all experimental conditions can be controlled and measured - including the "cosmic ray" intensity and the contents of the chambers. The first beam data with the full CLOUD experiment is expected in 2010.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>