Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular spintronic action confirmed in nanostructure

16.10.2006
Researchers at the National Institute of Standards and Technology (NIST) have made the first confirmed "spintronic" device incorporating organic molecules, a potentially superior approach for innovative electronics that rely on the spin, and associated magnetic orientation, of electrons. The physicists created a nanoscale test structure to obtain clear evidence of the presence and action of specific molecules and magnetic switching behavior

Whereas conventional electronic devices depend on the movement of electrons and their charge, spintronics works with changes in magnetic orientation caused by changes in electron spin (imagine electrons as tiny bar magnets whose poles are rotated up and down).

Already used in read-heads for computer hard disks, spintronics can offer more desirable properties--higher speeds, smaller size--than conventional electronics. Spintronic devices usually are made of inorganic materials. The use of organic molecules may be preferable, because electron spins can be preserved for longer time periods and distances, and because these molecules can be easily manipulated and self-assembled. However, until now, there has been no experimental confirmation of the presence of molecules in a spintronic structure. The new NIST results are expected to assist in the development of practical molecular spintronic devices.

The experiments, described in the October 9 issue of Applied Physics Letters,* used a specially designed nanoscale "pore" in a silicon wafer. A one-molecule-thick layer of self-assembled molecules containing carbon, hydrogen and sulfur was sandwiched in the pore, between nickel and cobalt electrodes. The researchers applied an electric current to the device and measured the voltage levels produced as electrons "tunneled" through the molecules from the cobalt to the nickel electrodes. (Tunneling, observed only at nanometer and atomic dimensions, occurs when electrons exhibit wave-like properties, which permit them to penetrate barriers.)

The pore structure stabilized and confined the test molecules and enabled good molecule-metal contacts, allowing the scientists to measure accurately temperature-dependent behavior in the current and voltage that confirm electron tunneling through the molecular monolayer. Some electrons can lose energy while tunneling, which corresponds to vibration energies unique to the chemical bonds within the molecules. The NIST team used this information to identify and unambiguously confirm that the assembled molecules remain encapsulated in the pore and are playing a role in the device operation. In addition, by varying the magnetic field applied to the device and measuring the electrical resistance, the researchers identified magnetic switching in the electrodes from matching to opposite polarities.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>