Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express successfully powers through eclipse season

28.09.2006
The Mars Express spacecraft has emerged from an unusually demanding eclipse season introducing a special, ultra-low-power mode nicknamed 'Sumo' - an innovative configuration aimed at saving the power necessary to ensure spacecraft survival.
This mode was developed through tight teamwork between ESOC mission controllers, principal investigators, industry and mission management.

In the past weeks, Mars Express faced an unusually demanding solar eclipse season running from end-August until late September. Eclipses are caused by the natural movements of the Earth and Mars - and Mars Express - around the Sun. During this period, the spacecraft spent as long as 75 minutes hidden from the Sun during each approximately 6-hour-long orbit about the Red Planet. During these 'blackouts', the solar panels generated no power and the spacecraft ran on battery power alone.

In an eclipse, three lithium-ion batteries previously charged by the solar panels provide power to the spacecraft's on-board scientific instruments and flight systems. The batteries can normally provide more than enough power if they have been fully charged.

However, an anomaly identified shortly after the mission's 2 June 2003 launch limits the amount of electricity produced by the panels that can be delivered to the rest of the spacecraft, including the batteries. As a result, mission controllers realised early on that the batteries might not fully recharge after each lengthy blackout during the recent eclipse season, with the ultimate result that the spacecraft might loose all power.

Scientists, engineers and industry solve potentially critical problems

Mars Express has already come through several eclipse seasons, but the current one happens to coincide with the spacecraft being at aphelion, the point in its orbit lying the farthest from the Sun. As a result, the power available from the solar arrays drops by a further 20 percent.

"This was potentially critical, and we knew we had to devise a solution that wasn't in the manual," said Michel Denis, Spacecraft Operations Manager based at ESOC, ESA's Space Operations Centre, in Darmstadt, Germany.

Denis says the solution was found by devising a configuration, or mode, for the spacecraft in which all but the most essential on-board devices were switched off or powered down. Further, to collect all possible power-producing energy from the Sun, the spacecraft would have to be turned away from the Earth most of the time, resulting in very short communication sessions with controllers on the ground.

As this way of operating was not envisioned when Mars Express was built, ESOC mission controllers and technical specialists went back to the mission procedure guides and original manufacturer's documents to run a full engineering review of the spacecraft's hardware and software, seeking to save every last watt of electricity.

The Mars Express prime contractor, Astrium, in Toulouse, France, worked closely with ESA, providing detailed information and conducting a parallel study to cross-check and verify the ESOC team's findings. Principal investigators and scientists also contributed, verifying how and under what circumstances the mission's instruments - there are seven - could be successfully powered down and stored at low temperatures.

'Sumo' mode wrestles with the problem

Controllers nicknamed the sought-after ultra-low-power mode 'Sumo', for 'survival mode', underscoring the critical seriousness of the looming eclipse power challenge.

The intensive engineering review, started in 2005, took months of detailed planning and forecasting. The review was far more complex than merely summing the wattage of various devices and then turning off those that would bring the greatest energy saving.

Some components, for example, gain stability due to the heat emitted by nearby devices. If engineers tried to save power by turning those heat-emitting devices off, it would be necessary to turn on heaters to prevent other components from permanently freezing up, thus using even more electricity.

"We created Sumo mode from scratch, and it is a careful balance based on the total energy consumption tally that would enable Mars Express to survive," says Denis.

Sumo mode included turning off all science instruments, as well as powering down systems including communications and transmitter, data handling, on-board memory (not needed if instruments wouldn't be collecting data), the solar array motor and several heaters and thermal systems.

"Sumo mode was also innovative in that it preserved precious fuel, providing a wide range of options for future science-enhancing manoeuvres," said Fred Jansen, ESA Mission Manager for Mars Express.

By May 2006, mission controllers had found what proved to be the right configuration.

Teamwork and innovation provide safe passage

A series of tests and validations as well as a formal review by ESA determined that Sumo mode would reduce on-board power consumption from 400 to around 300 watts, a figure later verified in actual use, and low enough for the batteries to be adequately recharged after each eclipse.

With teams of engineers pulling extended day and night shifts in the mission's dedicated control room, Mars Express was switched to the innovative Sumo mode on 23 August this year. The spacecraft's orbit caused it to start experiencing increasing periods of blackout on 29 August, and the height of eclipse season was reached on 9 September, when the orbital blackouts lasted up to 75 minutes.

The extra-long eclipse season ended on 17 September and Mars Express has emerged with all systems nominal, thanks to close teamwork and some engineering innovation.

There are other benefits as well. "We've learned a lot about power management and we can apply these lessons not only to Mars Express during the rest of the mission but also to other missions," said Denis, adding, "For future eclipses, we are now even stronger."

Michel Denis | EurekAlert!
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>