Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On airplanes, fiber optics poised to reach new heights

20.09.2006
Safer, more reliable optical switches may replace electrical wiring in cockpits

In an effort to provide safer and more reliable components for aircraft, researchers have invented an optical on-off switch that can replace electrical wiring on airplanes with fiber optics for controlling elevators, rudders, and other flight-critical elements. Fiber-optics technology has already transformed life on the ground by replacing copper wire to transmit voice calls, Internet traffic, and other telecommunications. Now, engineers are preparing an important new fiber-optics application for liftoff, with their prototype switch ready for testing on real-life aircraft. The technology also has potential applications on the nation's highways, as a "weigh-in-motion" sensor for measuring the weight of fast-moving commercial trucks without requiring them to stop on a scale. The research is described by Zhaoxia Xie and Henry F. Taylor of Texas A&M University in the current issue of Optics Letters, a journal of the Optical Society of America.

Xie and Taylor's new optical device is simple, but vital for an aircraft: it's an on-off switch. It senses the press of a button from a pilot. Such switches are usually electrically based and require electrical wiring which could get complex and bulky with the many buttons in cockpits and throughout an aircraft. But a system based on a single optical fiber could potentially sense presses from hundreds of buttons simultaneously by detecting light signals coming from different buttons. The crucial component of the Texas A&M switch is called a fiber Fabry-Perot interferometer (FFPI). It consists of two parallel mirrors. When white light passes through the mirrors, some of it bounces between the mirrors, and some passes through. These light waves combine or "interfere" to produce a pattern. The interference pattern changes if the distance between the mirrors changes.

In the Texas A&M design, a small plank-like object, known as a cantilever, is bonded to the interferometer. The cantilever, in turn, is attached to a switch. Pressing the switch creates a force on the cantilever, which causes it to bend, changing the spacing between the mirrors and thereby altering the interference pattern. The altered interference pattern provides a signal to indicate that the switch has been pressed. This information can be transmitted optically to the desired part of the airplane. A network of other interferometers and lasers filters out fluctuations in temperature and other disturbances so that only the pressing of the button registers as a valid signal.

Using fiber optics to transmit signals has specific advantages for aircraft. A fiber-optics system is lightweight and does not take up much room. It is immune from lightning and electromagnetic interference. It also is a safer alternative for planes as it is not susceptible to causing fires. At least 26 accidents or serious incidents in aircraft since 1983 were caused by fires or other failures related to electrical wiring systems, according to the Federal Aviation Administration.

The fiber-optic approach is intended for both military and commercial aircraft. It could either be incorporated into new designs or retrofitted into existing aircraft. Voice communications equipment in newer aircraft is already fiber-optics based, says lead author Xie. Therefore, integrating other aircraft instrumentation into a single optics package could save weight, space, fuel, and construction costs on future aircraft.

Lockheed Martin has been among the supporters of this research. The next step is to test this system on a real airplane.

According to Xie, the technology also has potential applications for other modes of transportation.

"Due to the sheer value of car and truck traffic on our highways, current weighing systems using slow and cumbersome static scales aren't a viable option. Therefore there's a strong demand for an economic, effective and reliable 'weigh-in-motion' system," comments Xie. In the FFPI weigh-in-motion system, the optical sensors would be bonded in a groove of metal bars to measure the strain induced by the truck wheels passing. This could provide an alternative to cumbersome and time-consuming stops that trucks must currently make in highways, she says.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>