Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On airplanes, fiber optics poised to reach new heights

20.09.2006
Safer, more reliable optical switches may replace electrical wiring in cockpits

In an effort to provide safer and more reliable components for aircraft, researchers have invented an optical on-off switch that can replace electrical wiring on airplanes with fiber optics for controlling elevators, rudders, and other flight-critical elements. Fiber-optics technology has already transformed life on the ground by replacing copper wire to transmit voice calls, Internet traffic, and other telecommunications. Now, engineers are preparing an important new fiber-optics application for liftoff, with their prototype switch ready for testing on real-life aircraft. The technology also has potential applications on the nation's highways, as a "weigh-in-motion" sensor for measuring the weight of fast-moving commercial trucks without requiring them to stop on a scale. The research is described by Zhaoxia Xie and Henry F. Taylor of Texas A&M University in the current issue of Optics Letters, a journal of the Optical Society of America.

Xie and Taylor's new optical device is simple, but vital for an aircraft: it's an on-off switch. It senses the press of a button from a pilot. Such switches are usually electrically based and require electrical wiring which could get complex and bulky with the many buttons in cockpits and throughout an aircraft. But a system based on a single optical fiber could potentially sense presses from hundreds of buttons simultaneously by detecting light signals coming from different buttons. The crucial component of the Texas A&M switch is called a fiber Fabry-Perot interferometer (FFPI). It consists of two parallel mirrors. When white light passes through the mirrors, some of it bounces between the mirrors, and some passes through. These light waves combine or "interfere" to produce a pattern. The interference pattern changes if the distance between the mirrors changes.

In the Texas A&M design, a small plank-like object, known as a cantilever, is bonded to the interferometer. The cantilever, in turn, is attached to a switch. Pressing the switch creates a force on the cantilever, which causes it to bend, changing the spacing between the mirrors and thereby altering the interference pattern. The altered interference pattern provides a signal to indicate that the switch has been pressed. This information can be transmitted optically to the desired part of the airplane. A network of other interferometers and lasers filters out fluctuations in temperature and other disturbances so that only the pressing of the button registers as a valid signal.

Using fiber optics to transmit signals has specific advantages for aircraft. A fiber-optics system is lightweight and does not take up much room. It is immune from lightning and electromagnetic interference. It also is a safer alternative for planes as it is not susceptible to causing fires. At least 26 accidents or serious incidents in aircraft since 1983 were caused by fires or other failures related to electrical wiring systems, according to the Federal Aviation Administration.

The fiber-optic approach is intended for both military and commercial aircraft. It could either be incorporated into new designs or retrofitted into existing aircraft. Voice communications equipment in newer aircraft is already fiber-optics based, says lead author Xie. Therefore, integrating other aircraft instrumentation into a single optics package could save weight, space, fuel, and construction costs on future aircraft.

Lockheed Martin has been among the supporters of this research. The next step is to test this system on a real airplane.

According to Xie, the technology also has potential applications for other modes of transportation.

"Due to the sheer value of car and truck traffic on our highways, current weighing systems using slow and cumbersome static scales aren't a viable option. Therefore there's a strong demand for an economic, effective and reliable 'weigh-in-motion' system," comments Xie. In the FFPI weigh-in-motion system, the optical sensors would be bonded in a groove of metal bars to measure the strain induced by the truck wheels passing. This could provide an alternative to cumbersome and time-consuming stops that trucks must currently make in highways, she says.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>