Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

General Relativity survives gruelling pulsar test – Einstein at least 99.95% right!

14.09.2006
An international research team led by Prof. Michael Kramer of the University of Manchester's Jodrell Bank Observatory, UK, has used three years of observations of the "double pulsar", a unique pair of natural stellar clocks which they discovered in 2003, to prove that Einstein's theory of general relativity - the theory of gravity that displaced Newton's - is correct to within a staggering 0.05%. Their results are published on the14th September in the journal Science and are based on measurements of an effect called the Shapiro Delay.

The double pulsar system, PSR J0737-3039A and B, is 2000 light-years away in the direction of the constellation Puppis. It consists of two massive, highly compact neutron stars, each weighing more than our own Sun but only about 20 km across, orbiting each other every 2.4 hours at speeds of a million kilometres per hour. Separated by a distance of just a million kilometres, both neutron stars emit lighthouse-like beams of radio waves that are seen as radio "pulses" every time the beams sweep past the Earth. It is the only known system of two detectable radio pulsars orbiting each other. Due to the large masses of the system, they provide an ideal opportunity to test aspects of General Relativity:

- Gravitational redshift: the time dilation causes the pulse rate from one pulsar to slow when near to the other, and vice versa.

- Shapiro delay: The pulses from one pulsar when passing close to the other are delayed by the curvature of space-time. Observations provide two tests of General Relativity using different parameters.

- Gravitational radiation and orbital decay: The two co-rotating neutron stars lose energy due to the radiation of gravitational waves. This results in a gradual spiralling in of the two stars towards each other until they will eventually coalesce into one body.

By precisely measuring the variations in pulse arrival times using three of the world's largest radio telescopes, the Lovell Telescope at Jodrell Bank, the Parkes radio-telescope in Australia, and the Robert C. Byrd Green Bank Telescope in West Virginia, USA, the researchers found the movement of the stars to exactly follow Einstein's predictions. "This is the most stringent test ever made of General Relativity in the presence of very strong gravitational fields -- only black holes show stronger gravitational effects, but they are obviously much more difficult to observe", says Kramer.

Since both pulsars are visible as radio emitting clocks of exceptional accuracy, it is possible to measure their distances from their common centre of gravity. "As in a balanced see-saw, the heavier pulsar is closer to the centre of mass, or pivot point, than the lighter one and so allows us to calculate the ratio of the two masses", explains co-author Ingrid Stairs, an assistant professor at the University of British Columbia in Vancouver, Canada. "What's important is that this mass ratio is independent of the theory of gravity, and so tightens the constraints on General Relativity and any alternative gravitational theories." adds Maura McLaughlin, an assistant professor at West Virginia University in Morgantown, WV, USA.

Though all the independent tests available in the double pulsar system agree with Einstein's theory, the one that gives the most precise result is the time delay, known as the Shapiro Delay, which the signals suffer as they pass through the curved space-time surrounding the two neutron stars. It is close to 90 millionths of a second and the ratio of the observed and predicted values is 1.0001 +/- 0.0005 - a precision of 0.05%.

A number of other relativistic effects predicted by Einstein can also be observed. "We see that, due to its mass, the fabric of space-time around a pulsar is curved. We also see that the pulsar clock runs slower when it is deeper in the gravitational field of its massive companion, an effect known as "time dilation".

A key result of the observations is that the pulsar's separation is seen to be shrinking by 7mm/day. Einstein's theory predicts that the double pulsar system should be emitting gravitational waves - ripples in space-time that spread out across the Universe at the speed of light. "These waves have yet to be directly detected ", points out team member Prof. Dick Manchester from the Australia Telescope National Facility, "but, as a result, the double pulsar system should lose energy causing the two neutron stars to spiral in towards each other by precisely the amount that we have observed - thus our observations give an indirect proof of the existence of gravitational waves."

Michael Kramer concludes; "The double pulsar is really quite an amazing system. It not only tells us a lot about general relativity, but it is a superb probe of the extreme physics of super-dense matter and strong magnetic fields but is also helping us to understand the complex mechanisms that generate the pulsar's radio beacons." He concludes; "We have only just begun to exploit its potential!"

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>