Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive review of Solar System speculates on life on other planets

13.09.2006
A comprehensive review by leading scientists about our Solar System which speculates on the possibility of life on other planets has been published.

Solar System Update brings together the work of 19 physicists, astronomers, and climatologists from Europe and the USA in 12 chapters on the sun, the main planets and comets.

The book, co-authored by Dr Philippe Blondel, of the University of Bath, highlights the many recent discoveries and in particular the amount of water, one of the essentials for life, found in the Solar System.

Recent studies have revealed ice in craters on Mercury, the closest planet to the sun, and that liquid water may once have existed on the surface of Mars, and may still be there underground.

In addition, liquid water may exist on moons around Jupiter, in particular Europa, Ganymede and Callisto, underneath a surface of ice.

In his chapter The Habitability of Mars: Past and Present, Thomas McCollom, of the Center for Astrobiology at the University of Colorado, USA, says that though the temperatures on Mars, as low as minus 120 Centigrade, mean that water cannot exist on the surface, there may be a "planet-wide liquid aquifer at some depth in its crust.” There is also geological evidence that water has flowed on the surface in the past.

“It seems increasingly apparent that habitable environments very likely exist on Mars today, and may have been considerably more diverse and abundant in the past,” he writes.

In his chapter The Icy Moons of Jupiter, Richard Greenberg, of the Department of Planetary Sciences at the University of Arizona, USA, says: “There is an unusually strong motivation to continue to pursue studies of the icy satellites.”

He says that three large moons of Jupiter “probably have liquid water layers, and one, Europa, almost certainly has an ocean just below the surface. Naturally liquid water raises the possibility of extraterrestrial life.”

However, if the surface ice were very thick, this would cut the water below off from oxygen and sunlight which are important for most forms of life on Earth, and so might have prevented life from developing.

Dr Blondel, who works in the University of Bath’s Department of Physics, took 18 months to edit the book, with his co-editor Dr John Mason.

“This book sets out how much water and ice there is in the solar system," said Dr Blondel. “This obviously has implications for our search for extra-terrestrial life.

“By understanding better how the climates of planets like Mars and Venus have evolved, we can understand more about climate change on Earth.

“For instance, the very hot and cloudy climate of Venus is likely to have developed after a runaway greenhouse effect, and the more we know about this the more we can understand some of the challenges caused by our climate change on Earth."

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>