Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotube ink: Desktop printing of carbon nanotube patterns

31.08.2006
Using an off-the-shelf inkjet printer, a team of scientists has developed a simple technique for printing patterns of carbon nanotubes on paper and plastic surfaces.

The method, which is described in the August 2006 issue of the journal Small, could lead to a new process for manufacturing a wide range of nanotube-based devices, from flexible electronics and conducting fabrics to sensors for detecting chemical agents.

Carbon nanotubes have enticed researchers since their discovery in 1991, offering an impressive combination of high strength, low weight, and excellent conductivity. But most current techniques to make nanotube-based devices require complex and expensive equipment.

"Our results suggest new alternatives for fabricating nanotube patterns by simply printing the dissolved particles on paper or plastic surfaces," said Robert Vajtai, a researcher with the Rensselaer Nanotechnology Center at Rensselaer Polytechnic Institute and corresponding author of the paper.

Vajtai and his colleagues at Rensselaer - along with a group of researchers led by Krisztián Kordás and Géza Tóth at the University of Oulu in Finland - have developed an approach that uses a commercial inkjet printer to deposit nanotubes onto various surfaces. They simply fill a conventional ink cartridge with a solution of carbon nanotubes dissolved in water, and then the printer produces a pattern just as if it was printing with normal ink. Because nanotubes are good conductors, the resulting images also are able to conduct electricity.

"Printed carbon nanotube structures could be useful in many ways," Vajtai said. "Some potential applications based on their electrical conductivity include flexible electronics for displays, antennas, and batteries that can be integrated into paper or cloth." Printing electronics on cloth could allow people to actually "wear" the battery for their laptop computer or the entire electronic system for their cell phone, according to Vajtai.

The technique could be used to print optical tags on money and other paper items that need to be tracked, and it could even lead to an electronic newspaper where the text can be switched without changing the paper, he said. The researchers printed different samples, some of which show sensitivity to the vapors of several chemicals, which also could make them useful as gas sensors.

The approach is simple, versatile, and inexpensive, which makes it superior to other methods for producing conductive surfaces, according to Vajtai. "A great advantage of our process is that the printed patterns do not require curing, which is known to be a limiting factor for conventional conductive ink applications," he said. "And since our ink is a simple water-based dispersion of nanotubes, it is environmentally friendly and easy to handle and store."

Because the process uses off-the-shelf printers, cartridges, and paper or plastic surfaces, the only real expense is the cost of the nanotubes. For this experiment, the researchers made their own multi-walled carbon nanotubes, which were then chemically modified to allow them to dissolve in water. But similar nanotubes can be purchased for as little as a tenth of the price of the more expensive single-walled variety of carbon nanotubes, Vajtai said. And the cost of nanotubes should continue to drop as commercial demand for higher volumes grows.

The researchers plan to continue optimizing the process to improve the quality of the nanotube ink and the conductivity of the printed images. At present, the paper or plastic must be run through the printer multiple times to get an electrically conductive pattern, with the conductivity increasing after each repetition. They also hope to experiment with different chemical modifications to produce a diversity of ink "colors," each producing surface patterns with different properties, Vajtai said.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>