Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA’s Cluster mission establishes why Earth’s aurorae shine

29.08.2006
ESA's Cluster mission has established that high-speed flows of electrified gas, known as bursty bulk flows, in the Earth's magnetic field are the carriers of decisive amounts of mass, energy and magnetic perturbation towards the Earth during magnetic substorms. When substorms occur, energetic particles strike our atmosphere, causing aurorae to shine.

Such colourful aurorae regularly light the higher latitudes in the northern and southern hemisphere. They are caused mostly by energetic electrons spiralling down the Earth's magnetic field lines and colliding with atmospheric atoms at about 100 kilometres altitude. These electrons come from the magnetotail, a region of space on the night-side of Earth where the Sun's wind of particles pushes the Earth’s magnetic field into a long tail.

At the tail's centre is a denser region known as the plasmasheet. Violent changes of the plasmasheet are known as magnetic substorms. They last up to a couple of hours and somehow hurl electrons and other charged particles earthwards. Apart from the beautiful light show, substorms also excite the Earth's ionosphere, perturbing the reception of GPS signals and communications between the Earth and orbiting satellites.

A key issue about substorms has been to determine how they fling material earthwards. The so called 'Bursty Bulk Flows' (BBFs), flows of gas that travel at over 300 kilometres per second through the plasmasheet, were discovered in the 1980s and became a candidate mechanism.

Observations suggested that BBFs were relatively small and typically lasted only 10 minutes, casting doubt on whether BBFs could play a major role in the magnetic substorm phenomenon. There was also doubt as to whether BBFs took place for all substorms.

Now these doubts are challenged by a statistical study of BBFs and magnetic substorms by Dr Jinbin Cao, Key Laboratory of Space Weather, CSSAR, Beijing, China, together with American and European colleagues.

Using observations of the central plasmasheet collected by three satellites of ESA's Cluster mission during July – October of 2001 and 2002, Cao and colleagues found 67 substorms and 209 BBFs. When they used the observations of only one spacecraft, they found that 78 percent of substorms are accompanied by at least one BBF. However, by combined observations from three out of the four Cluster spacecraft, they discovered that 95.5 percent of substorms are accompanied by BBFs. "For the first time, it seems possible that all substorms are accompanied by BBFs", says Cao.

Another key result of this work is that the average BBF duration is longer than previously estimated. Single satellite observations confirmed past results that the BBF duration was around 10 minutes.

However, by combining the data from three of the Cluster spacecraft, the observations reveal an average duration almost twice as long: 18 minutes and 25 seconds. So again, the multiple spacecraft data offered by Cluster was found to reveal more about the Earth's magnetic environment than data collected by single spacecraft.

"These new results by the Cluster mission clearly show that multi-point observations are the key to understanding the magnetic substorm phenomenon," says Philippe Escoubet, Cluster and Double Star Project Scientist of the European Space Agency.

Philippe Escoubet | EurekAlert!
Further information:
http://www.esa.int/esaSC/SEMRKHZ7QQE_index_0.html

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>