Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The IAU draft definition of “planet” and “plutons”

16.08.2006
The world’s astronomers, under the auspices of the International Astronomical Union (IAU), have concluded two years of work defining the difference between “planets” and the smaller “solar system bodies” such as comets and asteroids. If the definition is approved by the astronomers gathered 14-25 August 2006 at the IAU General Assembly in Prague, our Solar System will include 12 planets, with more to come: eight classical planets that dominate the system, three planets in a new and growing category of “plutons” – Pluto-like objects – and Ceres. Pluto remains a planet and is the prototype for the new category of “plutons.”

With the advent of powerful new telescopes on the ground and in space, planetary astronomy has gone though an exciting development over the past decade. For thousands of years very little was known about the planets other than they were objects that moved in the sky with respect to the background of fixed stars. In fact the word “planet” comes from the Greek word for “wanderer”. But today hosts of newly discovered large objects in the outer regions of our Solar System present a challenge to our historically based definition of a “planet”.


The world’s astronomers, under the auspices of the International Astronomical Union (IAU), have concluded two years of work defining the lower end of the planet scale – what defines the difference between “planets” and “solar system bodies”. If the definition is approved by the astronomers gathered 14-25 August 2006 at the IAU General Assembly in Prague, our Solar System will consist of 12 planets: Mercury, Venus, Earth, Mars, Ceres, Jupiter, Saturn, Uranus, Neptune, Pluto, Charon and 2003 UB313. The three new proposed planets are Ceres, Charon (Pluto’s companion) and 2003 UB313. There is no change in the planetary status of Pluto. In this artist’s impression the planets are drawn to scale, but without correct relative distances. Credit: The International Astronomical Union/Martin Kornmesser

At first glance one should think that it is easy to define what a planet is – a large and round body. On second thought difficulties arise, as one could ask “where is the lower limit?” – how large, and how round should an asteroid be before it becomes a planet – as well as “where is the upper limit?” – how large can a planet be before it becomes a brown dwarf or a star?

IAU President Ron Ekers explains the rational behind a planet definition: “Modern science provides much more knowledge than the simple fact that objects orbiting the Sun appear to move with respect to the background of fixed stars. For example, recent new discoveries have been made of objects in the outer regions of our Solar System that have sizes comparable to and larger than Pluto. These discoveries have rightfully called into question whether or not they should be considered as new ‘planets.’ ”

The International Astronomical Union has been the arbiter of planetary and satellite nomenclature since its inception in 1919. The world’s astronomers, under the auspices of the IAU, have had official deliberations on a new definition for the word “planet” for nearly two years. IAU’s top, the so-called Executive Committee, led by Ekers, formed a Planet Definition Committee (PDC) comprised by seven persons who were astronomers, writers, and historians with broad international representation. This group of seven convened in Paris in late June and early July 2006. They culminated the two year process by reaching a unanimous consensus for a proposed new definition of the word “planet.”

Owen Gingerich, the Chair of the Planet Definition Committee says: “In July we had vigorous discussions of both the scientific and the cultural/historical issues, and on the second morning several members admitted that they had not slept well, worrying that we would not be able to reach a consensus. But by the end of a long day, the miracle had happened: we had reached a unanimous agreement.”

The part of “IAU Resolution 5 for GA-XXVI” that describes the planet definition, states “A planet is a celestial body that (a) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (b) is in orbit around a star, and is neither a star nor a satellite of a planet.” Member of the Planet Definition Committee, Richard Binzel says: “Our goal was to find a scientific basis for a new definition of planet and we chose gravity as the determining factor. Nature decides whether or not an object is a planet.”

According to the new draft definition, two conditions must be satisfied for an object to be called a “planet.” First, the object must be in orbit around a star, while not being itself a star. Second, the object must be large enough (or more technically correct, massive enough) for its own gravity to pull it into a nearly spherical shape. The shape of objects with mass above 5 x 1020 kg and diameter greater than 800 km would normally be determined by self-gravity, but all borderline cases would have to be established by observation.

If the proposed Resolution is passed, the 12 planets in our Solar System will be Mercury, Venus, Earth, Mars, Ceres, Jupiter, Saturn, Uranus, Neptune, Pluto, Charon and 2003 UB313. The name 2003 UB313 is provisional, as a “real” name has not yet been assigned to this object. A decision and announcement of a new name are likely not to be made during the IAU General Assembly in Prague, but at a later time. The naming procedures depend on the outcome of the Resolution vote. There will most likely be more planets announced by the IAU in the future. Currently a dozen “candidate planets” are listed on IAU’s “watchlist” which keeps changing as new objects are found and the physics of the existing candidates becomes better known.

The IAU draft Resolution also defines a new category of planet for official use: "pluton". Plutons are distinguished from classical planets in that they reside in orbits around the Sun that take longer than 200 years to complete (i.e. they orbit beyond Neptune). Plutons typically have orbits that are highly tilted with respect to the classical planets (technically referred to as a large orbital inclination). Plutons also typically have orbits that are far from being perfectly circular (technically referred to as having a large orbital eccentricity). All of these distinguishing characteristics for plutons are scientifically interesting in that they suggest a different origin from the classical planets.

The draft “Planet Definition” Resolution will be discussed and refined during the General Assembly and then it (plus four other Resolutions) will be presented for voting at the 2nd session of the GA 24 August between 14:00 and 17:30 CEST.

Lars Christensen | alfa
Further information:
http://www.iau2006.org/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>