Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proba-3: ESA’s first step towards formation flying

09.08.2006
Proba-3 is the third in ESA’s series of missions for validating developments in space systems while carrying an ‘added value’ user payload which can directly benefit from the innovations under test.

Proba-3 will demonstrate the technologies required for formation flying of multiple spacecraft. An instrument to observe the solar corona is being used for the ongoing design phase.

During the ESA Council at Ministerial Level held in December 2005, new activities were proposed to cover the design, development and in-flight operation of a set of small satellites for the full-scale testing and validation of formation flying missions.

Formation flying technologies will make new types of missions possible and provide a leap in the performance of future science, Earth observation and application missions.

Mastering formation flying missions requires the development of specific technologies well beyond the present state-of-the-art in fields such as metrology and spacecraft guidance, navigation, and control.

Proba-3, currently in its preparatory study phase, will comprise two independent, three-axis stabilised spacecraft flying close to one another with the ability to accurately control the attitude and separation of the two craft.

Utilising either cold-gas or electrical thrusters for agile manoeuvring, and both radio-frequency and optical (laser-based) metrology techniques for accurate position measurement and control, the combined system is expected to achieve a relative positioning accuracy of the order of 100 microns over a separation range of 25 to 250 metres.

Other Proba spacecraft

Proba spacecraft are part of ESA’s technology demonstration initiatives, funded through the General Support Technology Programme (GSTP). They are series of small, low-cost satellites that are being used to validate new spacecraft technologies, research techniques and development approaches, while also carrying scientific payloads.

The first satellite in the series, Proba-1, was launched in October 2001. Its primary payload is an imaging spectrometer for Earth observation. This instrument exploits the spacecraft’s autonomy and high-performance attitude control and pointing capabilities. Originally designed for a two-year mission, Proba-1 is now in its fifth year of operations.

Proba-2 is currently under development and due for launch in September 2007. Seventeen new technological developments will be flown on Proba-2. Eight items form part of the spacecraft infrastructure, while the other nine are being carried as passenger technologies to gain flight heritage and experience before committing them to the infrastructure of other missions. Proba-2 will carry four experiments: two for solar observations and two for space weather measurements.

Frederic Teston | alfa
Further information:
http://www.esa.int/techresources/ESTEC-Article-fullArticle_par-28_1153128123382.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>