Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the world watched Huygens

28.07.2006
As Huygens parachuted to the surface of Titan in January 2005, a battery of telescopes around the world were watching or listening.

The results of those observations are now being collected together and published for the first time. The work gives valuable additional context within which to interpret the 'ground truth' returned by Huygens.

Hundreds of scientists, working at 25 radio and optical telescopes situated mainly around the Pacific, from where Titan would be visible at the time of Huygens descent, observed the moon before, during and after the Huygens descent. It was one of the largest ground-based observational campaigns ever to take place in support of a space mission.

The first observations began well over a year before Huygens entered the alien world's atmosphere, when scientists used the fact that Titan would pass directly in front of two distant stars. By watching the way the light faded from the stars, scientists analysed the density, wind and temperature of Titan’s atmosphere. It helped to build confidence by confirming that the atmosphere was similar to their expectations.

A year later, telescopes monitored Titan's atmosphere and its surface at infrared wavelengths for the days and weeks around the Huygens descent. Even now, those observations are of critical importance to the scientists as they continue to interpret the data returned by the probe. "We wanted to know whether the day of the descent was a special day or not on Titan, so that we can place the Huygens data in the correct context," says Olivier Witasse, a Huygens scientist at ESA's European Space Research and Technology Centre (ESTEC) in The Netherlands.

Radio telescopes were used to track Huygens. Both Single-Dish Doppler-tracking, and a Very Long Baseline Interferometry (VLBI) observation that included 17 telescopes, were planned. Doppler-tracking was expected to complement the radio experiment onboard Huygens that used the probe-orbiter link. The VLBI project was initiated about two years before the Huygens entry as a test experiment. No one could predict for certain that the Huygens signal would be detectable but, if it were detected, it would provide unique information.

"One goal of the VLBI observation was to reconstruct the probe's descent trajectory to an accuracy of ten kilometres. At Titan's distance of more than 1 billion kilometres, this is the equivalent of determining positions with an accuracy of just three metres on our own Moon. Another goal was to demonstrate this as a new technique for future missions," says Jean-Pierre Lebreton, Huygens Project Scientist.

The radio experiments worked beyond expectations and even proved to be a 'safety net' when the reception of Huygens' second communications channel failed during the descent. The data from several of Huygens’ six experiments was lost, including that required for the Huygens radio experiment to track the winds during the whole descent. The Doppler-tracking data from the Green Bank Telescope (West Virginia, America) and from Parkes (Australia) provided real-time information about the probe's drift in the winds. The processing of the VLBI data set is not yet completed but initial results look very promising.

The combined analysis of the Huygens data with that acquired by the Cassini orbiter in the past two years allowed scientists to reconstruct the movement of the probe precisely. They pinpointed its landing to 10.33 degrees south and 192.32 degrees west. The VLBI data set will provide an independent reconstruction of the trajectory. It should help to confirm and most likely refine the whole descent trajectory and the coordinates of the landing site.

Jean-Pierre Lebreton | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMJ83EQMPE_0.html

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>