Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the world watched Huygens

28.07.2006
As Huygens parachuted to the surface of Titan in January 2005, a battery of telescopes around the world were watching or listening.

The results of those observations are now being collected together and published for the first time. The work gives valuable additional context within which to interpret the 'ground truth' returned by Huygens.

Hundreds of scientists, working at 25 radio and optical telescopes situated mainly around the Pacific, from where Titan would be visible at the time of Huygens descent, observed the moon before, during and after the Huygens descent. It was one of the largest ground-based observational campaigns ever to take place in support of a space mission.

The first observations began well over a year before Huygens entered the alien world's atmosphere, when scientists used the fact that Titan would pass directly in front of two distant stars. By watching the way the light faded from the stars, scientists analysed the density, wind and temperature of Titan’s atmosphere. It helped to build confidence by confirming that the atmosphere was similar to their expectations.

A year later, telescopes monitored Titan's atmosphere and its surface at infrared wavelengths for the days and weeks around the Huygens descent. Even now, those observations are of critical importance to the scientists as they continue to interpret the data returned by the probe. "We wanted to know whether the day of the descent was a special day or not on Titan, so that we can place the Huygens data in the correct context," says Olivier Witasse, a Huygens scientist at ESA's European Space Research and Technology Centre (ESTEC) in The Netherlands.

Radio telescopes were used to track Huygens. Both Single-Dish Doppler-tracking, and a Very Long Baseline Interferometry (VLBI) observation that included 17 telescopes, were planned. Doppler-tracking was expected to complement the radio experiment onboard Huygens that used the probe-orbiter link. The VLBI project was initiated about two years before the Huygens entry as a test experiment. No one could predict for certain that the Huygens signal would be detectable but, if it were detected, it would provide unique information.

"One goal of the VLBI observation was to reconstruct the probe's descent trajectory to an accuracy of ten kilometres. At Titan's distance of more than 1 billion kilometres, this is the equivalent of determining positions with an accuracy of just three metres on our own Moon. Another goal was to demonstrate this as a new technique for future missions," says Jean-Pierre Lebreton, Huygens Project Scientist.

The radio experiments worked beyond expectations and even proved to be a 'safety net' when the reception of Huygens' second communications channel failed during the descent. The data from several of Huygens’ six experiments was lost, including that required for the Huygens radio experiment to track the winds during the whole descent. The Doppler-tracking data from the Green Bank Telescope (West Virginia, America) and from Parkes (Australia) provided real-time information about the probe's drift in the winds. The processing of the VLBI data set is not yet completed but initial results look very promising.

The combined analysis of the Huygens data with that acquired by the Cassini orbiter in the past two years allowed scientists to reconstruct the movement of the probe precisely. They pinpointed its landing to 10.33 degrees south and 192.32 degrees west. The VLBI data set will provide an independent reconstruction of the trajectory. It should help to confirm and most likely refine the whole descent trajectory and the coordinates of the landing site.

Jean-Pierre Lebreton | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMJ83EQMPE_0.html

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>