Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pre-life molecules present in comets

27.07.2006
Evidence of atomic nitrogen in interstellar gas clouds suggests that pre-life molecules may be present in comets, a discovery that gives a clue about the early conditions that gave rise to life, according to researchers from the University of Michigan and the Harvard-Smithsonian Center for Astrophysics.

The finding also substantially changes the understanding of chemistry in space.

The question of why molecular nitrogen hasn't been detected in comets and meteorites has puzzled scientists for years. Because comets are born in the cold, dark, outer reaches of the solar system they are believed to be the least chemically altered during the formation of the Sun and its planets.

Studies of comets are thought to provide a "fossil" record of the conditions that existed within the gas cloud that collapsed to form the solar system a little more than 4.6 billion years ago. In this cloud, since nitrogen was thought to be in molecular form, and it follows that comets should contain molecular nitrogen as well.

But the reason it isn't there is because it isn't present in the gas clouds whose microscopic solid particles eventually form comets, said Sébastien Maret, research fellow in astronomy at the University of Michigan, and Edwin Bergin, a professor of astronomy at the University of Michigan. Those clouds contain mostly atomic nitrogen, not molecular nitrogen, as previously thought.

Maret, Bergin, and collaborators from Harvard-Smithsonian Center for Astrophysics will publish their findings in the July 27 issue of the journal Nature.

The nitrogen bearing molecules in comets that crashed into Earth millions of years ago may have provided a sort of "pre-biotic jump start" to form the complex molecules that eventually led to life here, Bergin said.

"A lot of complex and simple biotic molecules have nitrogen and it's much easier to make complex molecules from atomic nitrogen," Bergin said. "All DNA bases have atomic nitrogen in them, amino acids also have atomic nitrogen in them. By that statement what we're saying is if you have nitrogen in its simplest form, the atomic form, it's much more reactive and can more easily form complex prebiotic organics in space". These complex organics were incorporated into comets and were provided to the Earth.

"What we're seeing in space is telling us something about how you make molecules that led to us," Bergin said.

Also of importance is the fact that odd anomalies in isotopic values in meteorites can also be explained if the nitrogen is not molecular, Bergin said.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu
http://www.astro.lsa.umich.edu/~ebergin/
http://www.astro.lsa.umich.edu/

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>