Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Titan's pebbles 'seen' by Huygens radio

An unexpected radio reflection from the surface of Titan has allowed ESA scientists to deduce the average size of stones and pebbles close to the Huygens’ landing site. The technique could be used on other lander missions to analyse planetary surfaces for free.

When Huygens came to rest on the surface of Titan on 14 January 2005, it survived the impact and continued to transmit to the Cassini mothership, orbiting above. Part of that radio signal 'leaked' downwards and hit the surface of Titan before being reflected back up to Cassini. On its way up, it interfered with the direct beam.

As Miguel Pérez-Ayúcar, a member of the Huygens Team at ESA’s European Space Research and Technology Centre (ESTEC) in The Netherlands, and his colleagues watched the signal coming back, they were initially puzzled to see the power of the signal rising and falling in a repetitive manner.

“Huygens had not been designed to necessarily survive impact so we had never thought about what the signal would look like from the surface,” says Pérez. After making a joke that aliens must be dragging the craft along the surface, Pérez and the team began work at once to understand the signal.

The clue was the repetitive oscillation of the power. It made Pérez think about the interaction of the direct signal with that reflecting from the surface of Titan. As Cassini travelled away from the Huygens landing site, the angle between it and Huygens changed. This altered the way in which the interference between the reflected and direct beams was detected, perhaps causing the variation in power.

He began running computer models and saw that not only could he reproduce the received signal but also it was sensitive to the size of pebbles on the surface of Titan.

Cassini collected data for 71 minutes after Huygens landed. After that time, the spacecraft’s motion took it below the horizon as seen from Huygens' landing site. Until then, it soaked up radio signals that encoded information about a swathe of Titan’s surface from 1 metre to 2 kilometres to the west of the landed probe.

To accurately mirror the true signal, Pérez and his team discovered that the surface swathe must be relatively flat and covered mostly in stones of around 5-10 centimetres in diameter.

This unique result complements the data taken by the Descent Imager and Spectral Radiometer (DISR) instrument. When Huygens came to rest on the surface of Titan, DISR was pointing due south. Its images show stones and terrain in good agreement with the newly deduced western facing radio data. "This is a real bonus to the mission. It requires no special equipment, just the usual communications subsystem," says Pérez.

Now that the scientists have understood the process using the unexpected Huygens data, the technique could be implemented on future lander missions. "This experience can be inherited by any future lander," says Pérez, "All that will be needed is a few refinements and it will become a powerful technique."

By subtly altering the properties of the radio beam for instance, the radio transmitter and receiver can be optimised to help deduce the chemical composition of the planetary surface.

Jean-Pierre Lebreton | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>