Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT physicists shed new light on superfluidity

25.07.2006
For the first time, MIT scientists have directly observed the transition of a gas to a superfluid, a form of matter closely related to the superconductors that allow electrical currents to travel without resistance.

Observations of superfluids may help solve lingering questions about high-temperature superconductivity, which has widespread applications for magnets, sensors and energy-efficient transport of electricity.

The superfluid gas created at MIT can also serve as an easily controlled model system to study properties of neutron stars or the quark-gluon plasma that existed in the early universe.

The work, reported in the July 6 issue of Nature and in the July 18 issue of Physical Review Letters, was led by Nobel laureate Wolfgang Ketterle, the John D. MacArthur Professor of Physics and a principal investigator in MIT's Research Laboratory of Electronics.

The team observed the transition to superfluidity of a gas of so-called fermionic atoms. Fermionic atoms are atoms with an odd number of neutrons, protons and electrons. They can become superfluid only if they form pairs. These pairs then have an even number of basic constituents and can form a kind of Bose-Einstein condensate, a type of matter where all pairs act as a giant matter wave, "march in lockstep" and flow without friction.

For several years, research groups around the world have seen the transition of a Fermi gas to superfluidity only indirectly because this transition was not accompanied by any change in the appearance of the gas cloud.

The new trick used by the MIT group was to have an unequal number of two kinds of fermions, sometimes labeled as spin up and spin down. In this situation, not all the atoms can find a partner to form a pair, and the difference between the paired superfluid and the gas of unpaired atoms is clearly visible.

One may regard the two kinds of fermions as women and men on the dance floor who have to pair up to perform a superfluid dance. At first, it was not clear what would happen if the men outnumbered the women. Would the single men take part in the dance, would they stay at the side of the dance floor or would their presence cause everyone to stop dancing?

The dance ends when the ratio of men to women exceeds six to one - this breakdown of superfluidity was observed by the MIT researchers in 2005.

For a smaller ratio, the superfluid dance continues.

In the current work, the MIT team has found that for the superfluid dance to go on, the single men (excess atoms) must be expelled from the dance floor. This expulsion is directly observed as the shell of excess atoms surrounding the superfluid core. When the atoms are cooled down, the appearance of superfluidity is accompanied by a sudden change in the shape of the cloud.

"To see directly how the superfluid core forms in the center is quite amazing," said physics graduate student Martin Zwierlein. Postdoctoral associate Yong-Il Shin adds, "Our results challenge state-of-the-art theory. The features we have observed are very difficult to reproduce in calculations."

Ketterle's team members, in addition to Zwierlein and Shin, were MIT physics graduate students André Schirotzek and Christian Schunck. All are members of MIT's Center for Ultracold Atoms.

The team observed fermionic superfluidity by cooling the gas close to about 50 billionths of 1 Kelvin, very close to absolute zero (-273 degrees C or -459 degrees F). By using phase-contrast imaging - a standard microscopy technique - in a novel way, they could directly observe the superfluid core and the shell of excess atoms around it.

Properties of superfluid ultracold fermions are also being studied by teams at the University of Colorado at Boulder, the University of Innsbruck in Austria, the École Normale Supérieure in Paris, Duke University and Rice University. The Rice group has also studied imbalanced Fermi mixtures.

The MIT research was supported by the National Science Foundation, the Office of Naval Research and NASA.

Heather Manning | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>